Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}=\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\)
\(=\frac{2009}{1.2008}+\frac{2009}{2.2007}+...+\frac{2009}{1004.1005}=2009.\left(\frac{1}{1.2008}+\frac{1}{2.2007}+...+\frac{1}{1004.1005}\right)\)
quy đồng mẫu số các phân số trong ngoặc: Gọi k1 là thừa số phụ của \(\frac{1}{1.2008}\);...; k1004 là thừa số phụ của \(\frac{1}{1004.1005}\)
=> \(B=2009.\frac{k_1+k_2+...+k_{1004}}{1.2.3.4...2007.2008}\)
=> \(1.2.3....2007.2008.2009.\frac{k_1+k_2+...+k_{1004}}{1.2.3...2007.2008}=2009.\left(k_1+k_2+...+k_{1004}\right)\)
Tổng k1 + k2 + ...+ k1004 là số tự nhiên => A chia hết cho 2009
Xét B=1+1/2+1/3+...+1/2008=(1+1/2008)+(1/2+1/2007)+...+(1/1004+1/1005)
=2009/1.2008+2009/2.2007+...+2009/1004.1005=2009.(1/1.2008+1/2.2007+...+1/1004.1005
Quy đồng mẫu số các phân số trong ngoặc:Gọi k1 là thừa số phụ của 1/1.2008;...k1004 là thừa số phụ của 1/1004.1005
=>B=2009.k1+k2+...+k1004/1.2.3.2007.2008
=>1.2.3.2007.2008.2009.k1+k2+...+k1004/1.2.3.2007.2008=2009(k1+k2+...+k1004)
Tổng k1+k2+...+k1004 là số tự nhiên=>A chia hết cho 2009
nhớ cho một đúng nha
Ta có: \(A=1\cdot2\cdot3\cdot...\cdot2007\cdot2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)
\(A=2008!\left[\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\right]\)
\(A=2008!\left(\frac{2009}{2008}+\frac{2009}{2\cdot2007}+...+\frac{2009}{1004\cdot1005}\right)\)
\(A=\frac{2009!}{2008}+\frac{2009!}{2\cdot2007}+...+\frac{2009!}{1004\cdot1005}\)
\(A=2009\left(2\cdot3\cdot...\cdot2017+3\cdot4\cdot...\cdot2016\cdot2018+2\cdot3\cdot...\cdot1003\cdot1006\cdot...\cdot2018\right)\)
chia hết cho 2019
=> đpcm
A=1.2.3....2007.2008.(1+1/2+...1/2007+1/2008)
=[1.2.3....2007.2008.(1+1/2+...1/2007+1/2008) ].2008chia hết cho2008
cho[1.2.3....2007.2008.(1+1/2+...1/2007+1/2008) ] Là B
A=B.2008chia hết cho 2008
=>Achia hết cho 2008
có : Q = [ 2 + 2^2 ] + [ 2^3 +2^4] + ... + [2^9 + 2^10]
Q = 2 [1+2] +2^3[1 +2]+ ...+ 2^9 [1+2]
Q = 2 . 3+2^3 .3 +... + 2^9 .3
Q = 3. [ 2 + 2^3 +... + 2^9]
Vậy Q chia hết cho 3
1) \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=0+\frac{1}{16}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}=\left(\frac{1}{4}\right)^2\)
\(\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\frac{1}{x}=\frac{1}{4}+\frac{2}{3}=\frac{3}{12}+\frac{8}{12}\)
\(\frac{1}{x}=\frac{11}{12}\)=> x*11=1*12
=> x=12/11
x=1,090 909 091 . Vậy x=1,090 909 091
mình không chắc nữa
chúc bạn học tốt!^_^
b = (2m + 1)^2 = 4m^2 + 4m + 1
=> A = (a - 1)(b - 1) = 4m(m -1).4m(m +1)
m(m -1) và m(m+1) đều chia hết cho 2 => A chia hết cho 4.2.4.2 = 64
vì: A chứa m(m-1)(m+1) là tích 3 số nguyên liên tiếp chia hết cho 3
3 và 64 nguyên tố cùng nhau => A chia hết cho 64.3 = 192
lộn cái này mới đúng, bạn chép cái này nhé
Xét B=1+12 +13 +...+12008 =(1+12008 )+(12 +12007 )+...+(11004 +11005 )
=20091.2008 +20092.2007 +...+20091004.1005 =2009.(11.2008 +12.2007 +...+11004.1005 )
quy đồng mẫu số các phân số trong ngoặc: Gọi k1 là thừa số phụ của 11.2008 ;...; k1004 là thừa số phụ của 11004.1005
=> B=2009.k1+k2+...+k10041.2.3.4...2007.2008
=> 1.2.3....2007.2008.2009.k1+k2+...+k10041.2.3...2007.2008 =2009.(k1+k2+...+k1004)
Tổng k1 + k2 + ...+ k1004 là số tự nhiên => A chia hết cho 2009