K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2021

Ta có: \(A=1\cdot2\cdot3\cdot...\cdot2007\cdot2008\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\)

\(A=2008!\left[\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\right]\)

\(A=2008!\left(\frac{2009}{2008}+\frac{2009}{2\cdot2007}+...+\frac{2009}{1004\cdot1005}\right)\)

\(A=\frac{2009!}{2008}+\frac{2009!}{2\cdot2007}+...+\frac{2009!}{1004\cdot1005}\)

\(A=2009\left(2\cdot3\cdot...\cdot2017+3\cdot4\cdot...\cdot2016\cdot2018+2\cdot3\cdot...\cdot1003\cdot1006\cdot...\cdot2018\right)\)

chia hết cho 2019

=> đpcm

23 tháng 8 2016

lộn cái này mới đúng, bạn chép cái này nhé

Xét B=1+12 +13 +...+12008 =(1+12008 )+(12 +12007 )+...+(11004 +11005 )

=20091.2008 +20092.2007 +...+20091004.1005 =2009.(11.2008 +12.2007 +...+11004.1005 )

quy đồng mẫu số các phân số trong ngoặc: Gọi k1 là thừa số phụ của 11.2008 ;...; k1004 là thừa số phụ của 11004.1005 

=> B=2009.k1+k2+...+k10041.2.3.4...2007.2008 

=> 1.2.3....2007.2008.2009.k1+k2+...+k10041.2.3...2007.2008 =2009.(k1+k2+...+k1004)

Tổng k1 + k2 + ...+ k1004 là số tự nhiên => A chia hết cho 2009 

 

 

25 tháng 8 2016

bạn muốn mk làm bài này ko

25 tháng 8 2016

 A=1.2.3....2007.2008.(1+1/2+...1/2007+1/2008) 

=[1.2.3....2007.2008.(1+1/2+...1/2007+1/2008) ].2008chia hết cho2008

cho[1.2.3....2007.2008.(1+1/2+...1/2007+1/2008) ] Là B

A=B.2008chia hết cho 2008

=>Achia hết cho 2008

17 tháng 5 2015

Xét \(B=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}=\left(1+\frac{1}{2008}\right)+\left(\frac{1}{2}+\frac{1}{2007}\right)+...+\left(\frac{1}{1004}+\frac{1}{1005}\right)\)

\(=\frac{2009}{1.2008}+\frac{2009}{2.2007}+...+\frac{2009}{1004.1005}=2009.\left(\frac{1}{1.2008}+\frac{1}{2.2007}+...+\frac{1}{1004.1005}\right)\)

quy đồng mẫu số các phân số trong ngoặc: Gọi k1 là thừa số phụ của \(\frac{1}{1.2008}\);...; k1004 là thừa số phụ của \(\frac{1}{1004.1005}\)

=> \(B=2009.\frac{k_1+k_2+...+k_{1004}}{1.2.3.4...2007.2008}\)

=> \(1.2.3....2007.2008.2009.\frac{k_1+k_2+...+k_{1004}}{1.2.3...2007.2008}=2009.\left(k_1+k_2+...+k_{1004}\right)\)

Tổng k1 + k2 + ...+ k1004 là số tự nhiên => A chia hết cho 2009 

 

 

23 tháng 8 2016

Xét B=1+1/2+1/3+...+1/2008=(1+1/2008)+(1/2+1/2007)+...+(1/1004+1/1005)

=2009/1​​.2008+2009/2.2007+...+2009/1004.1005=2009.(1/1.2008+1/2.2007+...+1/1004.1005

Quy đồng mẫu số các phân số trong ngoặc:Gọi k1 là thừa số phụ của 1/1.2008;...k1004 là thừa số phụ của 1/1004.1005

=>B=2009.k1+k2+...+k1004/1.2.3.2007.2008

=>1.2.3.2007.2008.2009.k1+k2+...+k1004/1.2.3.2007.2008=2009(k1+k2+...+k1004)

Tổng k1+k2+...+k1004 là số tự nhiên=>A chia hết cho 2009

nhớ cho một đúng nha 

24 tháng 8 2016

Xét B=1+1/2+1/3+...+1/2008=(1+1/2008)+(1/2+1/2007)+...+(1/1004+1/1005)

=2009/1.2008+2009/2.2007+...+2009/1004.1005=2009.(1/1.2008+1/2.2007+...+1/1004.1005)

Quy đồng mẫu số các phân số trong ngoặc:Gọi k1 là thườ số phụ của 1/1.2008;...k1004 là thừa số phụ của 1/1004.1005

=>B=2009.k1+k2+...+k1004/1.2.3...2007.2008

=>1.2.3...2007.2008.2009.k1+k2+...+k1004/1.2.3...2007.2008=2009.(k1+k2+...+k1004)

Tổng k1+k2+...+k1004 là số tự nhiên =>A chia hết cho2009

Cho một đúng nha

24 tháng 8 2016

chắc mình có quen vs bạn nhở

20 tháng 4 2021

Ta có: A=1.2.3.....99.100.(\(1+\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{99}+\dfrac{1}{100}\))

      \(=1.2.3...100\left[\left(1+\dfrac{1}{100}\right)+\left(\dfrac{1}{2}+\dfrac{1}{99}\right)+......+\left(\dfrac{1}{50}+\dfrac{1}{51}\right)\right]\)

      =>A= 1.2...100.\(\left[\dfrac{101}{100}+\dfrac{101}{2.99}+......+\dfrac{101}{50.51}\right]\)

       =1.2.....100.101\(\left[\dfrac{1}{100}+\dfrac{1}{2.99}+.....+\dfrac{1}{50.51}\right]⋮101\)

               Vậy A chia hết cho 101

 

20 tháng 4 2021

heheChúc bạn lm bài tốt 

4 tháng 4 2015

A=[(-1)+(-3)+....+(-2009)]+(2+4+...+2010)

A= {[-2009+(-1)].[(2009-1):2+1]}+{(2010+2).[(2010-2):2+1]}

A= {-2010.[(2009-1):2+1]}+[(2010+2).1005]

Vì có -2010 và 1005 chia hết cho 5 nên 2 tích nhỏ trên chia hết cho 5 suy ra A là tổng của 2 số chia hết cho 5 nên cũng chia hết cho 5. 

5 tháng 4 2015

A = [(-1) + 2] + [(-3) +4] + ... + [(-2009) + 2010]

   = 1 + 1 + 1 + ... + 1 (1005 số 1)

   = 1005 chia hết cho 5

5 tháng 12 2016

nỏ thích trả lời

:D :D :D