K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2018

Gọi tổng trên là T (tượng trưng cho tth :v)

Ta có: \(T=\left(7^0+7^1\right)+\left(7^2+7^3\right)+...+\left(7^{2011}+7^{2012}\right)\)

\(=1\left(7^0+7^1\right)+7^2\left(7^0+7^1\right)+...+7^{2011}\left(7^0+7^1\right)\)

\(=8\left(1+7^2+...+7^{2011}\right)⋮8^{\left(đpcm\right)}\) 

11 tháng 12 2018

72010 thôi nhé chứ ko phải 72012 đâu sorry

\(A=\left(1+7\right)+...+7^{2020}\left(1+7\right)=8\left(1+...+7^{2020}\right)⋮8\)

10 tháng 1 2022

\(A = (1 + 7) +...+7^2\)\(^0\)\(^2\)\(^0\) \((1 + 7) = 8 (1+...+7^2\)\(^0\)\(^2\)\(^0\)\() \) ⋮\(8\)

15 tháng 10 2021

b) Để 4x + 19 chia hết cho x + 1 thì 15 chia hết cho x + 1

--> x + 1 là ước của 15

TH1: x + 1 = 15 <=> x = 14

TH2: x + 1 = 1 <=> x = 0

TH3: x + 1 = 3 <=> x = 2

TH4: x + 1 = 5 <=> x= 4

8 tháng 11 2021

\(7^1+7^2+7^3+...+7^{117}+7^{118}=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{116}\left(1+7+7^2\right)\)

\(=7.57+7^4.57+...+7^{116}.57=57\left(7+7^4+...+7^{116}\right)⋮57\)

19 tháng 11 2022

a: \(B=3^1+3^2+...+3^{2010}\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{2009}\left(1+3\right)\)

\(=4\left(3+3^3+...+3^{2009}\right)⋮4\)

\(B=3\left(1+3+3^2\right)+...+3^{2008}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{2008}\right)⋮13\)

b: \(C=5^1+5^2+...+5^{2010}\)

\(=5\left(1+5\right)+...+5^{2009}\left(1+5\right)\)

\(=6\left(5+...+5^{2009}\right)⋮6\)

\(C=5\left(1+5+5^2\right)+...+5^{2008}\left(1+5+5^2\right)\)

\(=31\left(5+...+5^{2008}\right)⋮31\)

c: \(D=7\left(1+7\right)+...+7^{2009}\left(1+7\right)\)

\(=8\left(7+...+7^{2009}\right)⋮8\)

\(D=7\left(1+7+7^2\right)+...+7^{2008}\left(1+7+7^2\right)\)

\(=57\left(7+...+7^{2008}\right)⋮57\)

12 tháng 12 2021

Bài 1:

\(a,A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\\ A=\left(1+2\right)\left(2+2^3+...+2^{2009}\right)=3\left(2+...+2^{2009}\right)⋮3\\ A=\left(2+2^2+2^3\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\\ A=\left(1+2+2^2\right)\left(2+...+2^{2008}\right)=7\left(2+...+2^{2008}\right)⋮7\)

\(b,\left(\text{sửa lại đề}\right)B=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{2009}+3^{2010}\right)\\ B=\left(1+3\right)\left(3+3^3+...+3^{2009}\right)=4\left(3+3^3+...+3^{2009}\right)⋮4\\ B=\left(3+3^2+3^3\right)+...+\left(3^{2008}+3^{2009}+3^{2010}\right)\\ B=\left(1+3+3^2\right)\left(3+...+3^{2008}\right)=13\left(3+...+3^{2008}\right)⋮13\)

12 tháng 12 2021

Bài 2:

\(a,\Rightarrow2A=2+2^2+...+2^{2012}\\ \Rightarrow2A-A=2+2^2+...+2^{2012}-1-2-2^2-...-2^{2011}\\ \Rightarrow A=2^{2012}-1>2^{2011}-1=B\\ b,A=\left(2020-1\right)\left(2020+1\right)=2020^2-2020+2020-1=2020^2-1< B\)

30 tháng 11 2016

Ta có :

A chia hết cho 8 vì mọi số hạng của A deduf chia hết cho 8 .

\(A=8+2^2+....+8^{2019}\)

\(\Rightarrow A=8\left(1+8\right)+.....+8^{2018}\left(1+8\right)\)

\(\Rightarrow A=8.9+.....+8^{2018}.9\)

=> A chia hết cho 9 .

Mà (8;9)=1

=> A chia hết cho 8x9=72

\(A=8\left(1+8+8^2\right)+....+8^{2017}\left(1+8+8^2\right)\)

\(A=8.73+....+8^{2017}.73\)

=> A chia hết cho 73

30 tháng 11 2016

Các bạn trả lời gấp giúp mình nhá!!!

23 tháng 12 2021

\(A=7\left(1+7+7^2\right)+7^4\left(1+7+7^2\right)+...+7^{118}\left(1+7+7^2\right)=7.57+7^4.57+...+7^{118}.57=57\left(7+7^4+...+7^{118}\right)⋮57\)

AH
Akai Haruma
Giáo viên
23 tháng 12 2021

Lời giải:
$A=(7+7^2+7^3)+(7^4+7^5+7^6)+....+(7^{118}+7^{119}+7^{120})$
$=7(1+7+7^2)+7^4(1+7+7^2)+...+7^{118}(1+7+7^2)$

$=7.57+7^4.57+...+7^{118}.57$

$=57(7+7^4+...+7^{118})\vdots 57$ 

Ta có đpcm.

30 tháng 12 2019

=(1+7) + 72.1 + 72.7+.............................+72010.(7+1)

=8+72.(1+7)+..............................+72010.(1+7)

=8.1+72.8+..................................+72010.8

=8.(1+72+74+76+....................+72010) chia hết cho 8

(7^0+7^1+7^2+7^3+...+7^2010+7^2011):8   

=(7^0+7^1)+(7^2+7^30+...+(7^2010+7^2011) 

=(7^0.7^0+7^1.7^0)+...+(7^2010.7^0+7^2011.7^1) 

=7^0+7^0+...+7^0  <p>

=7^0:8</p>