K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

a) Trong phép chia cho 3 số dư có thể là 0, 1, 2

________________ 4 _________________, 3

________________ 5 ___________________4

b) Số chia hết vcho 3 là 3k, chia 3 dư 1 là 3k+1, chia 3 dư 2 là 3k+2

2 tháng 7 2018

Cam on ban nha !

20 tháng 10 2016

a,Nếu n = 3k thì n² + 1 = (3k)² + 1 = 9k² + 1 chia 3 dư 1 
Nếu n = 3k + 1 thì n² + 1 = (3k + 1)² + 1 = 9k² + 6k + 2 chia 3 dư 2 
Nếu n = 3k + 2 thì n² + 1 = (3k + 2)² + 1 = 9k² + 12k + 5 chia 3 dư 2 
Vậy vớj mọj n thuộc Z, n^2 + 1 không chia hết cho 3

b,chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng) 
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27. 
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27. 
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1 
= (10^k+18k-1)+9*10^k+18 
= (10^k+18k-1)+9(10^k+2) 
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27. 

Chứng minh 9(10^k+2) chia hết cho 27. 
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng) 
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27. 
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27. 
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2) 
= 9(10^m+2) +81*10^m 
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27 
=>9(10^k+2) chia hết cho 27 
=>10^(k+1)+18(k+1)-1 chia hết cho 27 
=>10^n+18n-1 chia hết cho 27=> đpcm

K MINH NHA!...............

10 tháng 5 2022

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

29 tháng 6 2016

1) Chữ số tự nhiên có 4 chữ số có:

       9999-1000+1=9000( số)

A) Chữ số chia hết cho 5 nhưng không chia hết cho 2 có chữ số tận cùng là 5

    Chữ số tự nhiên có 4 chữ số chia hết cho 5 nhưng không chia hết cho 2 có:

         (9995-1005):10+1=900(số)

B)Chữ số chia hết cho 2 vá 5 có chữ số tận cùng là 0

   Chữ số tự nhiên có 4 chữ số chia hết cho 2 và 5 có :

        (9990-1000):10+1=900(số)

C)Chữ số chia cho 5 dư 3 có chữ số tận cùng là 3 và 8

   Chữ số tự nhiên có 4 chữ số chia cho 5 dư 3 có:

         (9998-1003):5+1=1800(số)

                   Đáp số :1) 9000 số 

                               A) 900 số

                               B) 900 số

                                C) 1800 số

28 tháng 2 2018

Có 13 giao thừa = 1.2.3.4.5.6.7.8.9.10.11.12.13 chia hết cho 2

Có 11 giao thừa = 1.2.3.4.5.6.7.8.9.10.11 chia hết cho 2

suy ra 13 giao thừa - 11 giao thừa chia hết cho 2

xin các bạn k cho mình nhé

27 tháng 10 2017

Chứng minh rằng:

\(2^{10}+2^{11}+2^{12}\)

\(=2^{10}\left(1+2+2^2\right)\)

\(=2^{10}.7\) \(⋮\) 7

Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7

27 tháng 10 2017

Chứng minh rằng:

\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)

\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)

\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)

\(=36.3^n+12.3^n\)

\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N

Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N

5 tháng 4 2017

Ta có:10^28+8=100...008 (27 chữ số 0) 
Xét 008 chia hết cho 8 =>10^28+8 chia hết cho 8 (1) 
Xét 1+27.0+8=9 chia hết cho 9=>10^28+8 chia hết cho 9 (2) 
Mà (8,9)=1 (3).Từ (1),(2),(3) =>10^28+8 chia hết cho (8.9=)72 
Nếu chưa học thì giải zầy: 
10^28+8=2^28.5^28+8 
=2^3.2^25.5^28+8 
=8.2^25.5^28+8 chia hết cho 8 
Mặt khác:10^28+8 chia hết cho 9(chứng minh như cách 1) và(8,9)=1 
=>10^28+8 chia hết cho 8.9=72 

5 tháng 4 2017

abcdeg = ab . 10000 + cd .100 + eg
= (ab . 9999 + cd . 99) +( ab + cd + eg) 
= 11. (ab . 909 + cd . 9) +( ab + cd + eg) 
Ta thấy 11. (ab . 909 + cd . 9) chia hết cho 11 
mà theo bài ra ab + cd + eg
Chia hết cho 11 
Vậy nên: 11. (ab . 909 + cd . 9) +( ab + cd + eg) hay abcdeg

Vì 11\(⋮\)11

Vậy...

Vậy