Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)5\(^5\)-5\(^4\)+5\(^3\)=5\(^3\)x5\(^2\)-5\(^3\)x5\(^1\)+5\(^3\)x1=\(5^3\)x(\(5^2-5^1+1\))=\(5^3\)x121
1)\(14+x^3=22.100^0\Rightarrow14+x^3=22.1\Rightarrow14+x^3=22\Rightarrow x^3=22-14\Rightarrow x^3=8\Rightarrow x=2\)
2)\(125-5\left(x-3\right)=10^2\Rightarrow125-5x+15=100\Rightarrow5x=125-100+15\Rightarrow5x=40\Rightarrow x=8\)
3) Ta có: x chia hết cho 12 và x nhỏ nhất khác 0 => x = 12
4) 48 chia hết cho x ; 36 chia hết cho x và 3 < x < 14
=> \(x\in UC\left(36;48\right);3< x< 14\Rightarrow x=\left\{4;6;12\right\}\)
\(B=2+2^2+2^3+2^4+2^5+......+2^{180}\)
\(B=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)+......+2^{176}\left(2+2^2+2^3+2^4\right)\)
\(B=30+2^4.30+....+2^{176}.30\)
\(B=30\left(1+2^4+....+2^{176}\right)\) chia hết cho 2 và 5
6x+11y chia hết 31 nên 6x+11y+31y chia hết 31, hay 6x+42y chia hết 31, hay 6(x+7y) chia hết 31, suy ra x+7y chia hết 31 Vì ƯC(6,31)=1
Nếu x+7y chia hết 31 suy ra 6(x+7y) chia hết 31, hay 6x+42y chia hết 31, suy ra 6x+11y+31y chia hết 31, suy ra 6x+11y chia hết 31
a,4n-5 chia hết cho n-7
=>4n-28+33 chia hết cho n-7
=>4(n-7)+33 chia hết cho n-7
=>33 chia hết cho n-7<=>n-7 \(\in\)Ư(33)
=>n-7 \(\in\) {-33;-11;-3;-1;1;3;11;33}
=>n-7 \(\in\) {-26;-4;4;6;8;10;18;40}
những câu sau làm tương tự
**** mik nha
Chứng minh rằng:
\(2^{10}+2^{11}+2^{12}\)
\(=2^{10}\left(1+2+2^2\right)\)
\(=2^{10}.7\) \(⋮\) 7
Vậy \(2^{10}+2^{11}+2^{12}\) chia hết cho 7
Chứng minh rằng:
\(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\)
\(=3^n.3^3+3^n.3^2+2^n.2^3+2^n.2^2\)
\(=3^n\left(3^3+3^2\right)+2^n\left(2^3+2^2\right)\)
\(=36.3^n+12.3^n\)
\(=6\left(6.3^n+2.3^n\right)\) \(⋮\) 6 với mọi n \(\in\) N
Vậy \(3^{n+3}+3^{n+2}+2^{n+3}+2^{n+2}\) chia hết cho 6 với mọi n \(\in\) N