Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: 76 + 75 - 74
= 74 . (49+7-1)
= 74 . 55 chia hết cho 11 => ĐPCM
Ta có: 2454⋅5424⋅210
= (23 . 3)54 . (33 . 2) . 210
= 2162 . 354 . 372. 224 . 210
= 2196 . 3126
= (2189 . 3126). 27
=7263 . 27 chia hết cho 63 => ĐPCM
\(24^{54}.54^{24}.2^{10}=\left(2^3\right)^{54}.3^{54}.2^{24}.\left(3^3\right)^{24}.2^{10}=2^{196}.3^{126}=2^7.2^{189}.\left(3^2\right)^{63}\)
\(=2^7.\left(2^3\right)^{63}.9^{63}=2^7.8^{63}.9^{63}=2^7.72^{63}\) chia hết cho \(72^{63}\)
tham khảo câu b bài 1 ở link này https://olm.vn/hoi-dap/detail/88152567739.html
\(24^{54}.54^{24}.2^{10}\)
\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)
\(=2^{196}.3^{126}\)
Lại có :
\(72^{63}=\left(2^3.3^2\right)^{63}\)
\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}\)
\(=2^{189}.3^{126}\)
Vì \(2^{196}.3^{126}⋮2^{189}.3^{126}\Leftrightarrowđpcm\)
Ta có:
\(24^{54}.54^{24}.2^{10}=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=\left(2^3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)
\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)
\(=2^{196}.3^{126}\) (1)
Lại có:
\(72^{63}=\left(2^3.3^2\right)^{63}=2^{189}.3^{126}\)(2)
Từ (1) và (2) ⇒ \(24^{54}.54^{24}.2^{10}⋮72^{63}\)
khi tách VT và VP ra TSNT ta có:
2454.5424.210=2196.3126
7263=2189..3126
nhận xét: 2196 chia hết cho 2189 3126chia hết cho 3126
suy ra ĐPCM