Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh
a) \(2\equiv-1\left(mod3\right)\)
\(\Rightarrow2^{1000}\equiv\left(-1\right)^{1000}\equiv1\left(mod3\right)\Rightarrow2^{1000}-1\equiv0\left(mod3\right)\Rightarrowđpcm\)
b) \(19\equiv-1\left(mod20\right)\)
\(\Rightarrow19^{45}\equiv\left(-1\right)^{45}\equiv1\left(mod20\right);19^{30}\equiv\left(-1\right)^{30}\equiv1\left(mod20\right)\)
\(\Rightarrow19^{45}+19^{30}\equiv0\left(mod20\right)\Rightarrowđpcm\)
Ta có : \(2013^{2015}+1^{2015}⋮\left(2013+1\right)=2014\)
\(2015^{2013}-1^{2013}⋮\left(2015-1\right)=2014\)
Do đó : \(\left(2013^{2015}+1^{2015}\right)+\left(2015^{2013}-1^{2013}\right)⋮2014\)
\(\Rightarrow2013^{2015}+1+2015^{2013}-1⋮2014\)
\(\Rightarrow2013^{2015}+2015^{2013}+\left(1-1\right)⋮2014\)
\(\Rightarrow2013^{2015}+2015^{2013}⋮2014\)
Vậy bài toán đã được chứng minh