Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: \(M=0\)
mà \(\left\{{}\begin{matrix}\left(x-2021\right)^{2022}>=0\\\left(2021-y\right)^{2020}>=0\end{matrix}\right.\)
nên x-2021=0 và 2021-y=0
=>x=2021 và y=2021
Bài làm:
Ta có: \(A\left(x\right)=x^3+3x^2-4x=x\left(x-1\right)\left(x+4\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=0\\x-1=0\\x+4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=0\\x=1\\x=-4\end{cases}}\)là nghiệm của A(x)
Vậy x = 0 là nghiêm của A(x)
Mà tại x = 0 thì giá trị của B(x) là:
\(B\left(0\right)=-2.0^3+3.0^2+4.0+1=1\)
=> x = 0 không là nghiệm của B(x)
Ta có:
\(F\left(x\right)=\frac{5}{4}x^2+2x+2\)
\(F\left(x\right)=\frac{1}{4}+x^2+x+x+2\)
\(F\left(x\right)=\left(x^2+x\right)+\left(x+1\right)+2+\frac{1}{4}\)
\(F\left(x\right)=x\left(x+1\right)+\left(x+1\right)+\frac{8}{4}+\frac{1}{4}\)
\(F\left(x\right)=\left(x+1\right)\left(x+1\right)+\frac{9}{4}\)
\(F\left(x\right)=\left(x+1\right)^2+\frac{9}{4}\)
Ta có:
\(\left(x+1\right)^2\ge0\)
\(\Rightarrow\left(x+1\right)+\frac{9}{4}\ge\frac{9}{4}\)
=> Đa thức \(F\left(x\right)\)không thể nhận giá trị \(0\)
a ) \(x^2+4x+5=x^2+2.x.2+2^2+1=\left(x+2\right)^2+1\)
\(Do\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1>0\forall x\left(đpcm\right)\)
b) \(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
\(Do\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\forall x\left(đpcm\right)\)
c)\(-\left(4x^2-12x+9\right)-1=-\left(2x-3\right)^2-1\)
\(Do-\left(2x-3\right)\le0\Rightarrow-\left(2x-3\right)-1\le-1\forall x\)
\(x^2+2.x.2+2^2+5-4\) \(\Rightarrow\left(x+2\right)^2+5-4\) \(\Rightarrow\left(x+2\right)^2+1\)
vì \(\left(x+2\right)^2\ge0\) \(\Rightarrow\left(x+2\right)^2+1\ge1\) \(\ge0\) \(\Rightarrow dpcm\)
b) \(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+1-\left(\frac{1}{2}\right)^2\) \(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{5}{4}\)
vì \(\left(x+\frac{1}{2}\right)^2\ge0\) \(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\ge0\) \(\Rightarrow dpcm\)
c) \(12x-4x^2-10=-\left(4x^2-12x+10\right)\) = \(\left[\left(2x\right)^2-2.2x.3+3^2\right]+10-3^2\)
\(\Rightarrow\left(2x-3\right)^2+10-9\) \(\Rightarrow\left(2x-3\right)^2+1\) vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2+1\ge1hay\ge0\left(1>0\right)\Rightarrow dpcm\)
a) 4x2+4x+2
=4x2+2x+2x+2
=2x.(2x+1)+2x+1+1
=2x.(2x+1)+(2x+1)+1
=(2x+1)2+1
Vì (2x+1)2 luôn lớn hơn hoặc = 0 nên (2x+1)2+1>0, vô nghiệm
b) x2+x+1
\(=x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\)
\(=x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0\) nên \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\), vô nghiệm
Phần c để tớ nghĩ đã
`1)A=x^2+2x+2`
`A=x^2+2x+1=(x+1)^2+1>=1>0(dpcm)`
`2)B=-4x^2+4x-2`
`B=-4x^2+4x-1-1=-(2x-1)^2-1<=-1<0(dpcm)`
1. Ta có \(A=x^2+2x+2=\left(x+1\right)^2+1\)
mà \(\left(x+1\right)^2\ge0\forall x\Rightarrow\left(x+1\right)^2+1\ge1>0\)
\(\Rightarrow A=x^2+2x+2>0\) ( đpcm )
2. Ta có \(B=-4x^2+4x-2=-\left(4x^2-4x+2\right)=-\left[\left(2x-1\right)^2+1\right]\)
mà \(\left(2x-1\right)^2\ge0\forall x\Rightarrow\left(2x-1\right)^2+1\ge1\Rightarrow-\left[\left(2x-1\right)^2+1\right]\le-1< 0\)
\(\Rightarrow B=-4x^2+4x-2< 0\) ( đpcm )