Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(-x^2+4x-5\)
\(=-\left(x^2-4x+5\right)\)
\(=-\left(x^2-4x+4+1\right)\)
\(=-\left(x-2\right)^2-1< 0\forall x\)
b: Ta có: \(x^4\ge0\forall x\)
\(3x^2\ge0\forall x\)
Do đó: \(x^4+3x^2\ge0\forall x\)
\(\Leftrightarrow x^4+3x^2+3>0\forall x\)
c: Ta có: \(\left(x^2+2x+3\right)=\left(x+1\right)^2+2>0\forall x\)
\(x^2+2x+4=\left(x+1\right)^2+3>0\forall x\)
Do đó: \(\left(x^2+2x+3\right)\left(x^2+2x+4\right)>0\forall x\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2+2x+4\right)+3>0\forall x\)
\(A=\left(x-1\right)\left(x-3\right)+2=x^2-4x+3+2=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1>0\forall x\)
Thực hiện phép nhân đa thức với đa thức ở vế trái
=> VT = VP (đpcm)
\(A=x^2+x+1\)
\(A=x^2+x+\dfrac{1}{4}-\dfrac{1}{4}+1\)
\(A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
mà \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\Rightarrow A=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>\dfrac{3}{4}>0\) với mọi x
\(\Rightarrow Dpcm\)
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
x2+x+1=x2+2.x.1/2+1/4+3/4
=(x+1/2)2+3/4
Vì (x+1/2)2\(\ge\)0 nên
(x+1/2)2+3/4>0
=>x2+x+1>0
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì: \(\left(x-\frac{1}{2}\right)^2\ge0,\forall x\)
=> \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
=>đpcm
Ta có:
\(x^2-x+1\\ < =>\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4},\forall x\)
Vì: \(\left(x-\frac{1}{2}\right)^2\ge0,\forall x\)
(ĐPCM)
Câu a :
\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)
Vậy biểu thức trên luôn lớn hơn 0 với mọi x
Làm Full cho you nhé,bạn kia sai r:
\(linh_1=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(đpcm\right)\)
\(linh_2=-4x^2-4x-2=-1\left(4x^2+4x+2\right)=-1\left(4x^2+4x+1+1\right)=-1\left(4x^2+4x+1\right)-1=-1\left(2x+1\right)^2-1< 0\left(đpcm\right)\)
Ta có : x2 >= 0 mà x =< x2 => x-x2 =< 0
Vậy x-x2 -1 =< -1 => x-x2 -1 < 0
Ta có : x2 >= 0 mà x =< x2 => x2 -x >= 0
Vậy x2 -x + 3/4 >= 3/4 => x2 -x + 3/4 > 0
bÀI LÀM
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
x4 - x + 1/2 = x4 - x2 +1/4 + x2 - x + 1/4 = (x4 - x2 +1/4) + (x2 - x - 1/4 +1/2) = (x2-1/2)2 + (x-1/2)2
ta thấy rằng (x2-1/2)2 và (x-1/2)2 luôn lớn hơn hoặc bằng 0 nhỏ nhất là bằng 0 => (x2-1/2)2 + (x-1/2)2 lớn hơn hoặc bằng 0
mà (x2-1/2)2 và (x-1/2)2 không thể đồng thời bằng 0
Suy ra (x2-1/2)2 + (x-1/2)2 > 0 với mọi x
cmr voi moi x thi x^4>x-1/2