K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2018

Gọi \(ƯCLN\left(14x+3,21x+4\right)=d\)

Ta có :

14 = 2.7

21 = 3.7

\(BCNN\left(14x,21x\right)=7.2.3=42x\)

Lại có : \(14x+3⋮d\)\(21x+4⋮d\)

\(\Rightarrow3\left(14x+3\right)⋮d\)

\(\Rightarrow2\left(21x+4\right)⋮d\)

\(\Rightarrow3\left(14x+3\right)-2\left(21x+4\right)⋮d\)

\(\Rightarrow\left(42x+9\right)-\left(42x+8\right)⋮d\)

\(\Rightarrow42x+9-42x-8⋮d\)

\(\Rightarrow\left(42x-42x\right)+\left(9-8\right)⋮d\)

\(\Rightarrow0+1⋮d\)

\(\Rightarrow1⋮d\left(ĐPCM\right)\)

Vậy phân số \(\frac{14x+3}{21x+4}\)là phân số tối giản \(\forall x\inℕ\)

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

Gọi d là ƯCLN(7n+4;5n+3)

Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d

=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d

=>35n+20\(⋮\)d;35n+21\(⋮\)d

=>[(35n+21)-(35n+20)]\(⋮\)d

=>[35n+21-35n-20]\(⋮\)d

=>1\(⋮\)d

=>d=1

Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)

9 tháng 5 2016

Gọi d là UCLN (7n+4;5n+3)

=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)

     *\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)

Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d

=>35n+20-35n-21 chia hết cho d

=>-1 chia hết cho d

=> d chỉ có thể là 1 

=> P/s \(\frac{7n+4}{5n+3}\) tối giản

24 tháng 8 2015

gọi d là ƯCLN của 21n+4 và 14n+3

=> 21n+4 chia hết cho d  =>2.(21n+4) chia hết cho d

     14n+3 chia hết cho d  =>3.(14n+3) chia hết cho d

=> (42n+9)-(42n+8) chia hết cho d

=> 42n+9-42n-8 chia hết cho d

=>1 chia hết cho d

=> d thuộc Ư(1)={1}

=> ƯCLN(21n+4;14n+3)=1 => phân số 21n+4/14n+3 là phân số tối giản (ĐPCM)

27 tháng 1 2017

Khó nhỉ

26 tháng 4 2020

a) Để 21n+4/14n+3 là phân số tổi giản thì ƯCLN(21n+4; 14n+3) =1

Gọi ƯCLN(21n+4; 14n+3) =d => 21n+4 \(⋮\)d; 14n+3 \(⋮\)d

=> (14n+3) -(21n+4) \(⋮\)d

=> 3(14n+3) -2(21n+4) \(⋮\)d

=> 42n+9 - 42n -8 \(⋮\)d

=> 1\(⋮\)d

=> 21n+4/14n+3 là phân số tối giản

Vậy...

c) Gọi ƯC(21n+3; 6n+4) =d; 21n+3/6n+4 =A => 21n+3 \(⋮\)d; 6n+4 \(⋮\)d

=> (6n+4) - (21n+3) \(⋮\)d

=> 7(6n+4) - 2(21n+3) \(⋮\)d

=> 42n +28 - 42n -6\(⋮\)d

=> 22 \(⋮\)cho số nguyên tố d

\(\in\){11;2}

Nếu phân số A rút gọn được cho số nguyên tố d thì d=2 hoặc d=11

Nếu A có thể rút gọn cho 2 thì 6n+4 luôn luôn chia hết cho 2. 21n+3 chia hết cho 2 nếu n là số lẻ

Nếu A có thể rút gọn cho 11 thì 21n+3 \(⋮\)11 => 22n -n +3\(⋮\)11 => n-3 \(⋮\)11 Đảo lại với n=11k+3 thì 21n+3 và 6n+4 chia hết cho 11

Vậy với n là lẻ hoặc n là chẵn mà n=11k+3 thì phân số đó rút gọn được

8 tháng 2 2018

Phân số \(\frac{2n+3}{3n+5}\)tối giản nếu ước chung lớn nhất của tử và mẫu là 1 hoặc -1

Gọi \(ƯCLN\left(2n+3;3n+5\right)=d\)ta có :

\(\left(2n+3\right)⋮d;\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(3\left(2n+3\right)⋮d;2\left(3n+5\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9\right)⋮d;\left(6n+10\right)⋮d\)

\(\Leftrightarrow\)\(\left(6n+9-6n-10\right)⋮d\)

\(\Leftrightarrow\)\(\left(-1\right)⋮d\)

Suy ra \(d\inƯ\left(-1\right)\)

Mà \(Ư\left(-1\right)=\left\{1;-1\right\}\)

Do đó \(d\in\left\{1;-1\right\}\)

Vật phân số \(\frac{2n+3}{3n+5}\)tối giản 

12 tháng 7 2016

                     Gọi \(\left(5n+1,20n+3\right)\)\(=d\)\(\left(d\in N\right)\)

                    \(\Rightarrow\hept{\begin{cases}5n+1:d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}4.\left(5n+1\right):d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}20n+4:d\\20n+3:d\end{cases}}\)

                     \(\Rightarrow\left(20n+4\right)-\left(20n+3\right):d\)

                     hay 1 : d => \(d\inƯ\left(1\right)\)

                     Mà Ư(1) = {-1;1} => d \(\in\){-1;1}

                   Vì d là lớn nhất nên d = 1 hay \(\left(5n+1,20n+3\right)=1\)

                  => 5n+1 và 20n+3 là 2 số nguyên tố cùng nhau

                  Vậy \(\frac{5n+1}{20n+3}\)là phân số tối giản với mọi số tự nhiên n

                    Dấu chia hết mk viết là dấu chia,ủng hộ mk nha !!!

12 tháng 7 2016

Gọi d = ƯCLN(5n+1, 20n+3) (d thuộc N*)

=> 5n+1 chia hết cho d; 20n+3 chia hết cho d

=> 4.(5n + 1) chia hết cho d; 20n+3 chia hết cho d

=> 20n+4 chia hết cho d; 20n+3 chia hết cho d

=> (20n+4) - (20n+3) chia hết cho d

=> 20n + 4 - 20n - 3 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(5n+1, 20n+3) = 1

=> phân số 5n+1/20n+3 tối giản (đpcm)

Chú ý: phân số tối giản là phân số có ƯCLN của tử và mẫu = 1

Ủng hộ mk nha ^_-