K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

\(ĐK:x\ne\pm y\\ A=\dfrac{x^2+xy-xy+y^2}{\left(x-y\right)\left(x+y\right)}:\dfrac{x^2+2xy+y^2-2xy}{\left(x-y\right)\left(x+y\right)}\\ A=\dfrac{x^2+y^2}{\left(x+y\right)\left(x-y\right)}\cdot\dfrac{\left(x+y\right)\left(x-y\right)}{x^2+y^2}=1\left(đpcm\right)\)

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

24 tháng 12 2017

Hỏi đáp ToánHỏi đáp Toán

7 tháng 11 2018

\(=\dfrac{2}{xy}:\left(\dfrac{x-y}{xy}\right)^2-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2}{xy}.\left(\dfrac{xy}{x-y}\right)^2-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2xy}{\left(x-y\right)^2}-\dfrac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\dfrac{2xy-x^2-y^2}{\left(x-y\right)^2}\)

\(=\dfrac{-\left(x^2-2xy+y^2\right)}{\left(x-y\right)^2}=\dfrac{-\left(x-y\right)^2}{\left(x-y\right)^2}=-1\)

vậy .........................................

20 tháng 11 2023

1: \(C=\left(x-\dfrac{4xy}{x+y}+y\right):\left(\dfrac{x}{x+y}+\dfrac{y}{y-x}+\dfrac{2xy}{x^2-y^2}\right)\)

\(=\dfrac{\left(x+y\right)^2-4xy}{x+y}:\left(\dfrac{x}{x+y}-\dfrac{y}{x-y}+\dfrac{2xy}{\left(x-y\right)\left(x+y\right)}\right)\)

\(=\dfrac{x^2+2xy+y^2-4xy}{x+y}:\dfrac{x\left(x-y\right)-y\left(x+y\right)+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{x^2-2xy+y^2}{x+y}:\dfrac{x^2-xy-xy-y^2+2xy}{\left(x+y\right)\left(x-y\right)}\)

\(=\dfrac{\left(x-y\right)^2}{x+y}\cdot\dfrac{x^2-y^2}{x^2-y^2}=\dfrac{\left(x-y\right)^2}{x+y}\)

2: \(\left(x^2-y^2\right)\cdot C=-8\)

=>\(\left(x-y\right)\left(x+y\right)\cdot\dfrac{\left(x-y\right)^2}{x+y}=-8\)

=>\(\left(x-y\right)^3=-8\)

=>x-y=-2

=>x=y-2

\(M=x^2\left(x+1\right)-y^2\left(y-1\right)-3xy\left(x-y+1\right)+xy\)

\(=\left(y-2\right)^2\left(y-2+1\right)-y^2\left(y-1\right)-3xy\left(-2+1\right)+xy\)

\(=\left(y-1\right)\left[\left(y-2\right)^2-y^2\right]+3xy+xy\)

\(=\left(y-1\right)\left(-4y+4\right)+4xy\)

\(=-4\left(y-1\right)^2+4y\left(y-2\right)\)

\(=-4y^2+8y-4+4y^2-8y\)
=-4

20 tháng 11 2023

Em cảm ơn ạ.

HQ
Hà Quang Minh
Giáo viên
10 tháng 1 2024

\(\begin{array}{l}a) A = \left( {\frac{1}{{x - 1}} + \frac{1}{{x + 1}}} \right)\left( {x - \frac{1}{x}} \right)\\ = \left( {\frac{{x + 1 + x - 1}}{{{x^2} - 1}}} \right).\left( {\frac{{{x^2} - 1}}{x}} \right)\\ = \frac{{2x}}{{{x^2} - 1}}.\frac{{{x^2} - 1}}{x} = \frac{{2x.\left( {{x^2} - 1} \right)}}{{x\left( {{x^2} - 1} \right)}} = 2\end{array}\)

Vậy A = 2 không phụ thuộc vào giá trị của các biến

\(\begin{array}{l}b) B = \left( {\dfrac{x}{{xy - {y^2}}} + \dfrac{{2{\rm{x}} - y}}{{xy - {x^2}}}} \right).\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{x\left( {y - x} \right)}}.\dfrac{{{x^2}y - x{y^2}}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{x}{{y\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}} + \dfrac{{2{\rm{x}} - y}}{{ - x\left( {x - y} \right)}}.\dfrac{{xy\left( {x - y} \right)}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2}}}{{{{\left( {x - y} \right)}^2}}} - \dfrac{{\left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}}\\= \dfrac{{{x^2} - \left( {2{\rm{x}} - y} \right)y}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{x^2} - 2{\rm{x}}y + {y^2}}}{{{{\left( {x - y} \right)}^2}}} = \dfrac{{{{\left( {x - y} \right)}^2}}}{{{{\left( {x - y} \right)}^2}}} = 1\end{array}\)

Vậy B = 1 không phụ thuộc vào giá trị của biến x

a: ĐKXĐ: \(x\notin\left\{0;1;-1\right\}\)

\(A=\left(\dfrac{1}{x-1}+\dfrac{1}{x+1}\right)\cdot\left(x-\dfrac{1}{x}\right)\)

\(=\dfrac{x+1+x-1}{\left(x-1\right)\left(x+1\right)}\cdot\dfrac{x^2-1}{x}\)

\(=\dfrac{2x}{x^2-1}\cdot\dfrac{x^2-1}{x}=\dfrac{2x}{x}=2\)

b: ĐKXĐ: \(\left\{{}\begin{matrix}x\ne y\\x\ne0\\y\ne0\end{matrix}\right.\)

\(B=\left(\dfrac{x}{xy-y^2}+\dfrac{2x-y}{xy-x^2}\right)\cdot\dfrac{x^2y-xy^2}{\left(x-y\right)^2}\)

\(=\left(\dfrac{x}{y\left(x-y\right)}-\dfrac{2x-y}{x\left(x-y\right)}\right)\cdot\dfrac{xy\left(x-y\right)}{\left(x-y\right)^2}\)

\(=\left(\dfrac{x^2-y\left(2x-y\right)}{xy\left(x-y\right)}\right)\cdot\dfrac{xy}{x-y}\)

\(=\dfrac{x^2-2xy+y^2}{xy\left(x-y\right)^2}\cdot xy=\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2}=1\)