K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8xác định khi 4ax + 6x + 9y + 6ay ≠ 0

⇒ 2x(2a + 3) + 3y(2a + 3) = (2a + 3)(2x + 3y)  ≠  0

Ta có: 2a + 3  ≠  0 ⇒ a  ≠  - 3/2 ; 2x + 3y  ≠  0 ⇒ x  ≠  - 3/2 y

Điều kiện: x  ≠  - 3/2 y và a  ≠  - 3/2

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy biểu thức không phụ thuộc vào x, y.

28 tháng 6 2019

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8xác định khi:

(x + y)(6x – 6y) ≠ 0 ⇒ Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Điều kiện x  ≠  ± y

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy biểu thức không phụ thuộc vào x, y.

28 tháng 11 2016

a) \(\frac{\left(x+a\right)^2-x^2}{2x+a}=\frac{x^2+2xa+a^2-x^2}{2x+a}=\frac{2ax+a^2}{2x+a}=\frac{a\left(2x+a\right)}{2x+a}=a\)

b) \(\frac{x^2-y^2}{axy-ax^2-ay^2-axy}=\frac{x^2-y^2}{-a\left(x^2+y^2\right)}\) =>cần phụ thuộc vào x,y (Không thì đề sai)

c) \(\frac{2ax-2x-3y+3ay}{4ax+6x+9y+6ay}=\frac{2x\left(a-1\right)+3y\left(a-1\right)}{2x\left(a+3\right)+3y\left(a+3\right)}=\frac{\left(2x+3y\right)\left(a-1\right)}{\left(2x+3y\right)\left(a+3\right)}=\frac{a-1}{a+3}\)

28 tháng 11 2016

Bạn xem đề câu b và c nhé..... C tớ có sửa rồi nhưng không biết đúng hay sai

Với điều kiện xy\(\ne\)0;+ -3/2 y;x\(\ne\)-y các phân thức có nghĩa. Ta có

\(\frac{5x\left(2x-3y\right)^2}{3y\left(4x^2-9y^2\right)}:\frac{\left(2x^2+2xy\right)\left(2x-3y\right)}{2x^2y+5xy^2+3y^3}\)\(=\)\(\frac{5x\left(2x-3y\right)^2.y\left(2x^2+5xy+3y^2\right)}{3y\left(4x^2-9y^2\right).2x\left(x+y\right).\left(2x-3y\right)}\)

\(=\)\(\frac{10xy\left(2x-3y\right)^2.\left(2x^2+2xy+3xy+3y^2\right)}{6xy\left(2x-3y\right).\left(2x+3y\right)\left(x+y\right)\left(2x-3y\right)}\)\(=\)\(\frac{10xy\left(2x-3y\right)^2\left(x+y\right).\left(2x+3y\right)}{6xy\left(2x-3y\right)^2.\left(2x+3y\right).\left(x+y\right)}\)

\(=\)\(\frac{5}{3}\)

6 tháng 7 2017

ĐK \(\hept{\begin{cases}xy\ne0\\2x-3y\ne0,2x+3y\ne0\\x\ne-y\end{cases}}\)

\(=\frac{5x\left(2x-3y\right)^2}{3y\left(2x+3y\right)\left(2x-3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{xy\left(2x+3y\right)+y^2\left(2x+3y\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}:\frac{2x\left(x+y\right)\left(2x-3y\right)}{\left(2x+3y\right)\left(xy+y^2\right)}\)

\(=\frac{5x\left(2x-3y\right)}{3y\left(2x+3y\right)}.\frac{y\left(x+y\right)\left(2x+3y\right)}{2x\left(x+y\right)\left(2x-3y\right)}=\frac{5}{6}\)

Vậy giá trị của biểu thức không phụ thuộc vào biến

9 tháng 8 2017

Sủa đề : CM \(A=\frac{2ax-2x-3y+3ay}{4ax+4x+6y+6ay}\) ko phụ thuộc vào biếnx;y :

Ta có : \(\frac{2ax-2x-3y+3ay}{4ax+4x+6y+6xy}=\frac{a\left(2x+3y\right)-\left(2x+3y\right)}{2a\left(2x+3y\right)+2\left(2x+3y\right)}=\frac{\left(a-1\right)\left(2x+3y\right)}{\left(2a+2\right)\left(2x+3y\right)}=\frac{a-1}{2a+2}\)

Biểu thức sau khi dút gọn ko chứa biến của x;y nên A ko phụ thuộc vào biến x;y (đpcm)

Đinh Đức Hùng xem lại đi Mình thấy có gì sai hay sao đó
24 tháng 6 2017

Phân thức đại số

Phân thức đại số

16 tháng 10 2017

bài 1)

a) \(\dfrac{2ax-2x-3y+3ay}{4ax+6x+9y+6ay}\)

= \(\dfrac{\left(2ax-2x\right)+\left(3ay-3y\right)}{\left(4ax+6x\right)+\left(6ay+9y\right)}\)

= \(\dfrac{2x\left(a-1\right)+3y\left(a-1\right)}{2x\left(2a+3\right)+3y\left(2a+3\right)}\)

= \(\dfrac{\left(2x+3y\right)\left(a-1\right)}{\left(2x+3y\right)\left(2a+3\right)}\)

= \(\dfrac{a-1}{2a+3}\)

Vậy biểu thức \(\dfrac{2ax-2x-3y+3ay}{4ax+6x+9y+6ay}\) ko phụ thuộc vào biến x,y mà phụ thuộc vào biến a

21 tháng 4 2017

a) 2x2=2(x1)02x−2=2(x−1)≠0 khi x10x−1≠0 hay x1x≠1

x21=(x1)(x+1)0x2−1=(x−1)(x+1)≠0 khi x10x−1≠0x+10x+1≠0

hay x1x≠1x1x≠−1

2x+2=2(x+1)02x+2=2(x+1)≠0 khi x+10x+1≠0 hay x1x≠−1

Do đó điều kiện để giá trị của biểu thức được xác định là x1,x1x≠−1,x≠1

b) Để chứng minh biểu thức không phục thuộc vào biến x ta phải chứng tỏ rằng có thể biến đổi biểu thức này thành một hằng số.

Thật vậy:(x+12x2+3x21x+32x+2).4x

18 tháng 7 2017

a, \(2x-2\ne0\) khi \(2x\ne2\Leftrightarrow x\ne1\)

\(x^2-1=\left(x+1\right)\left(x-1\right)\ne0\) khi \(x+1\ne0\)\(x-1\Leftrightarrow x\ne-1\)\(x\ne1\)

\(2x+2=2\left(x+1\right)\ne0\) khi \(x\ne-1\)

điều kiên của x để giá trị của biểu thức được xác định là : \(x\ne-1\)\(x\ne1\)

b, \(\left(\dfrac{x+1}{2x-2}\dfrac{3}{x^2-1}-\dfrac{x+3}{2x+2}\right).\dfrac{4x^2-4}{5}\)

= \(\left[\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x+1\right)\left(x-1\right)}+\dfrac{-\left(x+3\right)}{2\left(x+1\right)}\right].\dfrac{4\left(x^2-1\right)}{5}\)

=\(\dfrac{\left(x+1\right)\left(x+1\right)+3.2-\left(x+3\right)\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{x^2+2x+1+6-x^2+x-3x+3}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{10}{2\left(x+1\right)\left(x-1\right)}.\dfrac{4\left(x+1\right)\left(x-1\right)}{5}\)

= \(\dfrac{40\left(x+1\right)\left(x-1\right)}{10\left(x+1\right)\left(x-1\right)}\)

Vậy giá trị biểu thức được xác định thì nó không phụ thuộc vào giá trị của biến X