K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 7 2022

4x2+4y2+4xy>6y-4(1)

⇔4x2+4y2+4xy-6y+4>0(2)

⇔4x2+4xy+y2+3y2-6y+3+1>0

⇔(2x+y)2+3(y2-2y+1)+1>0

⇔(2x+y)2+3(y-1)2+1>0

+)(2x+y)2≥0

3(y-1)2≥0

→(2x+y)2+3(y-1)2≥0

→(2x+y)2+3(y-1)2+1≥1>0

BĐT(2) luôn đúng

 BĐT(1) luôn đúng

Vậy 

25 tháng 7 2022

Ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy

\Leftrightarrow (x^2 - 4xy + 4y^2) + 3(x^2 + 2x +1) \ge 0

\Leftrightarrow (x-2y)^2 + 3(x +1)^2 \ge 0 (luôn đúng với mọi xy).

Vậy với mọi xy ta có 4x^2 + 4y^2 + 6x + 3 \ge 4xy.

NV
19 tháng 6 2020

Đặt \(f\left(x\right)=x^2y^4-4xy^3+2x^2y^2+4y^2+4xy+x^2\)

\(f\left(x\right)=\left(y^4+2y^2+1\right)x^2-4\left(y^3-y\right)x+4y^2\)

\(a=y^4+2y^2+1>0;\forall y\)

\(\Delta'=4\left(y^3-y\right)^2-4y^2\left(y^4+2y^2+1\right)\)

\(=4y^6+4y^2-8y^4-4y^6-8y^4-4y^2=-16y^4\le0;\forall y\)

\(\Rightarrow f\left(x\right)\ge0\) ; \(\forall x;y\)

NV
19 tháng 6 2020

Đặt \(f\left(x\right)=25x^2+25y^2+9x^2+16y^2+144-72x-96y+24xy-72\)

\(=34x^2+41y^2-72x-96y+24xy+72\)

\(=34x^2+2\left(12y-36\right)x+41y^2-96y+72\)

\(a=34>0\)

\(\Delta'=\left(12y-36\right)^2-34\left(41y^2-96y+72\right)\)

\(=-1250y^2+2400y-1152=-2\left(25y-24\right)^2\le0;\forall y\)

\(\Rightarrow f\left(x\right)\ge0;\forall x;y\)

6 tháng 1 2018

Trước tiên ta cần chứng minh:

\(x^4+y^4\ge x^3y+xy^3\left(\forall x;y\right)\)(1)

Ở BĐT này có nhiều cách giải nhưng em giải cách thông thường thôi

BĐT(1) tương đương \(\left(x^4-x^3y\right)+\left(y^4-xy^3\right)\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\)\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\)\(\ge0\left(\forall x;y\right)\)(tự cm nhé)

\(\dfrac{x^4+y^4}{2}\ge\dfrac{x+y}{2}.\dfrac{x^3+y^3}{2}\Leftrightarrow\dfrac{2\left(x^4+y^4\right)}{4}\ge\dfrac{(x^4+y^4)+(x^3y+xy^3)}{4}\)( luôn đúng như trên)

\(\Rightarrowđpcm\)

7 tháng 1 2018

==" bữa h mày hok mấy abif như thế này hả ???

AH
Akai Haruma
Giáo viên
22 tháng 5 2023

Đề không đầy đủ. Bạn xem lại.

NV
19 tháng 2 2020

\(x^2+3+\frac{1}{x^2+3}=\frac{x^2+3}{9}+\frac{1}{x^2+3}+\frac{8\left(x^2+3\right)}{9}\ge2\sqrt{\frac{x^2+3}{9\left(x^2+3\right)}}+\frac{8.\left(0+3\right)}{9}=\frac{10}{3}\)

Dấu "=" xảy ra khi \(x=0\)

14 tháng 1 2021

\(x^2-4xy+5y^2+2x-8y+5=\left(x-2y+1\right)^2+\left(y-2\right)^2\ge0\forall x,y\).

14 tháng 1 2021

x2 - 4xy + 5y2 + 2x - 8y + 5

= x2 + 4y2 + 1 - 4xy + 2x  - 4y + y2 - 2y + 1

= (x - 2y + 1)2 + (y - 1)≥ 0

2 tháng 3 2021

Áp dụng BĐT Cosi:

\(\dfrac{x^2}{1+16x^4}+\dfrac{y^2}{1+16y^4}\le\dfrac{x^2}{8x^2}+\dfrac{y^2}{8y^2}=\dfrac{1}{4}\)

Đẳng thức xảy ra khi \(\left\{{}\begin{matrix}x=\pm\dfrac{1}{2}\\y=\pm\dfrac{1}{2}\end{matrix}\right.\)