Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử ab + 4 là số chính phương
Ta có: ab + 4 = x2
=> ab = x2 - 4
=> ab = (x - 2).(x + 2)
Giử sử a > b => a = x + 2; b = x - 2
=> a - b = (x + 2) - (x - 2)
=> a - b = x + 2 - x + 2
=> a - b = 4
=> với a - b = 4 thì ab + 4 là số chính phương
=> điều giả sử là đúng
ta có: giả sử ab + 4 = A2
<=> A2 - 4 = ab
<=> A2 - 22 = ab
<=> (A - 2) (A + 2) = ab : luôn đúng với mọi a,b
=> ĐCCM
t i c k nha!! 5675675677687697843543543534456567567876876876897
Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).
Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))
Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.
Vậy...
Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).
Khoảng này có \(n\)số tự nhiên.
Với \(k\)bất kì \(k=\overline{2,n+1}\)thì
\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố.
Do đó ta có đpcm.
đặt ab+4=x^2(xϵN)
→ab=x^2-4=(x-2)(x+2)
→b=\(\frac{\left(x-2\right)\left(x+2\right)}{a}=\frac{x-2}{a}.\left(x+2\right)\)
để b là số tự nhiên thì x-2 chia hết cho a
Ta chọn x-2=a
→b=a+4
Vậy với a ϵ N luôn tìm được số tự nhiên b sao cho ab+4 là số chính phương
Gỉa sử ab - 4 là x^2
Ta có
\(ab+4=x^2\)
\(\Rightarrow ab=x^2-2^2\)
\(\Rightarrow ab=\left(x+2\right)\left(x-2\right)\)
(+) Nếu a=x+2
=> b=x - 2
(+( Nếu a=x - 2
=> b=x+2
Vậy a ; b thỏa mãn \(\left(a;b\right)\in\left\{\left(x+2;x-2\right);\left(x-2;x+2\right)\right\}\) Với x là số tự nhiên
1.
\(2n+1\) luôn lẻ \(\Rightarrow2n+1=\left(2a+1\right)^2=4a^2+4a+1\Rightarrow n=2a\left(a+1\right)\)
\(\Rightarrow n\) chẵn \(\Rightarrow n+1\) lẻ \(\Rightarrow\) là số chính phương lẻ
\(\Rightarrow n+1=\left(2b+1\right)^2=4b^2+4b+1\)
\(\Rightarrow n=4b\left(b+1\right)\)
Mà \(b\left(b+1\right)\) là tích 2 số tự nhiên liên tiếp \(\Rightarrow\) luôn chẵn
\(\Rightarrow4b\left(b+1\right)⋮8\Rightarrow n⋮8\)
Mặt khác số chính phương chia 3 chỉ có các số dư 0 và 1
Mà \(\left(n+1\right)+\left(2n+1\right)=3n+2\) chia 3 dư 2
\(\Rightarrow n+1\) và \(2n+1\) đều chia 3 dư 1
\(\Rightarrow n⋮3\)
\(\Rightarrow n⋮24\) do 3 và 8 nguyên tố cùng nhau
Với a bất kì thì ta chọn b sao cho b=a-4
Khi đó: ab+4=a(a-4)+4
=a2-4a+4
=a2-2.2.a+22
=(a-2)2
Vậy với a E N ta luôn tìm được b sao cho ab+4 là số chính phương
gieo mưa có ngày gặp bão . hehe