K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 8 2021

Ta có : \(27xyz\le\left(x+y+z\right)^3\)

<=> \(\left(x+y+z\right)^3-27xyz\ge0\)

<=> (x + y)3 + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge0\)

=> x3 + y3 + 3xy(x + y) + 3(x + y)z(x + y + z) + z3 - 27xyz \(\ge\)

<=> (x3 + y3 + z3) + 3(x + y)[xy + z(x + y + z)] - 27xyz \(\ge0\)

<=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz   \(\ge0\)

mà  x + y \(\ge2\sqrt{xy}\)

Thật vậy x + y \(\ge2\sqrt{xy}\)

=> (x + y)2 \(\ge\)4xy 

<=> x2 - 2xy + y2  \(\ge\) 0

<=> (x - y)2 \(\ge\)0 (đúng \(\forall x;y>0\))

Tương tự ta được y + z \(\ge2\sqrt{yz}\)

z + x \(\ge2\sqrt{xz}\)

Khi đó 3(x + y)(y + z)(z + x) \(\ge3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}=24xyz\)(dấu "=" xảy ra khi x = y = z)

=> (x3 + y3 + z3) + 3(x + y)(y + z)(z + x) - 27xyz   \(\ge0\)

<=> (x3 + y3 + z3) + 24xyz - 27xyz \(\ge0\)

<=> x3 + y3 + z3 - 3xyz   \(\ge0\)

<=> (x + y + z)[(x - y)2 + (y - z)2 + (z - x)2\(\ge\)0 (đúng)

=> ĐPCM

16 tháng 11 2019

Ô hay, em vừa tìm ra một cách chứng minh cho BĐT (2) nè:

Do x, y, z có vai trò hoán vị vòng quanh, không mất tính tổng quát giả sử \(y=min\left\{x,y,z\right\}\)

\(VT-VP=\frac{27y\left(y-z\right)^2+\left(4x+16z-11y\right)\left(y+z-2x\right)^2}{4}\ge0\)

Cái này gọi là mò:D

22 tháng 10 2016

dia chi ban vua truy cap khong tim thay

22 tháng 10 2016

Vì xyz = 1 nên ta có thể đặt \(x=\frac{a^2}{bc};y=\frac{b^2}{ac};z=\frac{c^2}{ab}\left(a,b,c>0,a^2\ne bc,b^2\ne ac,c^2\ne ab\right)\)

Khi đó bất đẳng thức tương đương với

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge1\)

Mà ta có

\(\frac{a^4}{\left(a^2-bc\right)^2}+\frac{b^4}{\left(b^2-ac\right)^2}+\frac{c^4}{\left(c^2-ab\right)^2}\ge\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\)

Ta cần chứng minh

\(\frac{\left(a^2+b^2+c^2\right)^2}{\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2}\ge1\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge\left(a^2-bc\right)^2+\left(b^2-ab\right)^2+\left(c^2-ab\right)^2\)

\(\Leftrightarrow\left(ab+bc+ca\right)^2\ge0\left(đúng\right)\)

Vậy ta có điều phải chứng minh

31 tháng 12 2015

là câu hỏi tương tự nha bạn

18 tháng 4 2019

Ta có: \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\left(1+\frac{x}{y}+\frac{y}{z}+\frac{x}{z}\right)\left(1+\frac{z}{x}\right)=2+\frac{x}{y}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}+\frac{y}{x}+\frac{x}{z}\)

\(=2+\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\right)\)

Ta chứng minh bất đẳng thức :

\(\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\right)\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Vì x, y, z đóng vai trò như nhau nên ta chứng minh bất đẳng thức phụ:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{x+y+z}{\sqrt[3]{xyz}}\)

Xét:

 \(3\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)=\left(\frac{2x}{y}+\frac{y}{z}\right)+\left(\frac{2y}{z}+\frac{z}{x}\right)+\left(\frac{2z}{x}+\frac{x}{y}\right)\)

Áp dụng BĐT AM-GM ta có:

\(\frac{2x}{y}+\frac{y}{z}=\frac{x}{y}+\frac{x}{y}+\frac{y}{z}\ge3\sqrt[3]{\frac{x.x.y}{y.y.z}}=3\sqrt[3]{\frac{x.x.x}{xyz}}=3\frac{x}{\sqrt[3]{xyz}}\)

Tương tự như thế ta có:

\(3\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)\ge3.\frac{x}{\sqrt[3]{xyz}}+3\frac{y}{\sqrt[3]{xyz}}+3\frac{z}{\sqrt[3]{xyz}}\)

\(\Rightarrow\)\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\ge\frac{x+y+z}{\sqrt[3]{xyz}}\)

Như vậy:

\(\left(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\right)+\left(\frac{x}{z}+\frac{z}{y}+\frac{y}{x}\right)\ge\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

=> \(\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)\ge2+\frac{2\left(x+y+z\right)}{\sqrt[3]{xyz}}\)

Dấu "=" khi x=y=z

18 tháng 4 2019

Câu hỏi của Incursion_03 - Toán lớp 9 - Học toán với OnlineMath

7 tháng 10 2016

\(\frac{x^2-yz}{x\left(1-yz\right)}=\frac{y^2-xz}{y\left(1-yz\right)}\)

\(\Rightarrow\left(x^2-yz\right)y\left(1-yz\right)=\left(y^2-xz\right)x\left(1-yz\right)\)

\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2=xy^2-x^2z-xy^3z+x^2yz^2\)

\(\Rightarrow x^2y-x^3yz-y^2z+xy^2z^2-xy^2+x^2z+xy^3z-x^2yz^2=0\)

\(\Rightarrow xy\left(x-y\right)-xyz\left(x-y\right)\left(x+y+z\right)+z\left(x-y\right)\left(x+y\right)=0\)

\(\Rightarrow\left(x-y\right)\left[xy-xyz\left(x+y+z\right)+xz+yz\right]=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=y\\xy+yz+zx=0\end{cases}}\)

Mà \(x\ne y\) nên \(xy+xz+yz-xyz\left(x+y+z\right)=0\)

\(\Leftrightarrow xy+xz+yz=xyz\left(x+y+z\right)\)

Đpcm

7 tháng 10 2016

Từ gt ta có : (x2 - yz)y(1 - yz) = (y2 - xz)x(1 - yz)

=> 0 = VT - VP = (x2y - x3yz - y2z - xy2z2) - (xy2 - xy3z  - x2z - x2yz2) = xy(x - y) - xyz(x2 - y2) + z(x2 - y2) + xyz2(y - x)

= (x - y)[xy - xyz(x + y) + z(x + y) - xyz2] = (x - y)(xy + yz + xz - xyz(x + y + z)]

\(x\ne y\Rightarrow x-y\ne0\) nên xy + yz + xz - xyz(x + y + z) = 0 => xy + yz + xz = xyz(x + y + z)

Bạn ko hiểu chỗ nào thì hỏi mình nhé!