K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 6 2021

Lời giải:
Gọi $d$ là ƯCLN của $m$ và $n$. Khi đó: 

$m=dx; n=dy$ với $x,y$ là 2 số nguyên dương nguyên tố cùng nhau.

\(2^m-1=2^{dx}-1=(2^d)^x-1\vdots 2^d-1\)

\(2^n-1=2^{dy}-1=(2^d)^y-1\vdots 2^d-1\)

Vì $(2^m-1, 2^n-1)=1$ nên $2^d-1=1$

$\Rightarrow d=1$

Tức là $(m,n)=1$

5 tháng 8 2023

\(m\left(2m-3\right)-2m\left(m+1\right)\)

\(=2m^2-3m-2m^2-2m=-5m⋮5\Rightarrow dpcm\)

5 tháng 8 2023

\(m\left(2m-3\right)-2m\left(m+1\right)\)

\(=2m^2-3m-2m^2-2m\)

\(=-5m⋮5\) \(\forall m\in Z\)

Vậy \(m\left(2m-3\right)-2m\left(m+1\right)⋮m\left(\forall m\in Z\right)\)

28 tháng 12 2021

Ta có \(2^{p-1}\equiv1\left(\text{mod }p\right)\)

Ta có \(n.2^n\equiv m\left(p-1\right).2^{m\left(p-1\right)}\left(\text{mod }p\right)\Rightarrow n.2^n\equiv-m\equiv1\left(\text{mod }p\right)\)

\(\Rightarrow m=kp-1\left(k\in N\text{*}\right)\)

Vậy với \(n=\left(kp-1\right)\left(p-1\right)\left(k\in N\text{*}\right)\) thì \(n.2^n-1⋮p\)

28 tháng 12 2021

Chị em mãi đỉnh ạvui!! Cơ mà không dám giấu gì chị là em ko hiểu đâu ạ:( Chị có thể làm chi tiết hơn đc chị vì em rất thiểu năng ạ.

 

??? Đề thiếu à bạn