Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng mọi số n thì
a)n(n+5)-(n-3)(n+2)chia hết cho 6
b)(n-1)(n+1)-(n-7)(n-15)chia hết cho12
\(a,n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\\ =n^2+5n-n^2+n+6=6n+6=6\left(n+1\right)⋮6\)
\(b,\) Sửa đề:
\(b,\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\\ =n^2-1-n^2+12n-35\\ =12n-36=12\left(n-3\right)⋮12\)
a: Ta có: \(n\left(n+5\right)-\left(n-3\right)\left(n+2\right)\)
\(=n^2+5n-n^2-2n+3n+6\)
\(=6n+6⋮6\)
( n - 1 )( n + 1 ) - ( n - 7 )( n - 5 )
= ( n^2 + n - n - 1 ) - ( n^2 - 5n - 7n + 35 )
= n^2 - 1 - n^2 + 12n - 35
= -1 + 12n - 35
= 12n - 36
= 12( n - 3 ) \(⋮12\)
\(\left(n-1\right)\left(n+1\right)-\left(n-7\right)\left(n-5\right)\)
\(=n^2-1-\left(n^2-12n+35\right)=n^2-1-n^2+12n-35\)
\(=12n-36=12\left(n-3\right)\)\(⋮12\)(đpcm).
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
Câu a đề sai rồi bạn
b: \(=n^2-1-n^2+12n-35=12n-36⋮12\)