K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 2 2016

Gọi UCLN(12a+1;30a+2)=d

Ta có:12a+1 chia hết cho d             =>5(12a+1) chia hết cho d          =>60a+5 chia hết cho d

        30a+2 chia hết cho d             =>2(30a+2) chia hết cho d           =>60a+4 chia hết cho d

=>(60a+5)-(60a+4) chia hết cho d

=>1 chia hết cho d

=>d=1

Vậy phân số \(\frac{12a+1}{30a+2}\) tối giản với mọi a là số nguyên

23 tháng 2 2016

Để 12a+1/30a+2 là phân số tối giản khi ƯCLN(12a+1,30a+2)=1.(5)

Gọi d là ƯCLN(12a+1,30a+2).

Ta có : 12a+1 chia hết cho d =>5(12a+1) chia hết cho d => 60a+5 chia hết cho d.            (1)

           30a+2 chia hết cho d =>2(30a+2) chia hết cho d => 60a+4 chia hết cho d.            (2)

Từ (1) và (2) => (60a+5)-(60a+4) chia hết cho d

                   =>1 chia hết cho d

                   => d thuộc ước nguyên của 1

                   => 12a+1 và 30a+2 nguyên tố cùng nhau.               (4)

Từ (4) và (5) =>12a+1/30a+2 là phân số tối giản với mọi a thuộc Z.

12 tháng 7 2016

mình mới có lớp 5 chuẩn bị lên lớp sau nên không bt đúng hay ko: 121+1/300+

12 tháng 7 2016

Nhìn qua thấy cách giải của mấy bạn cũng đúng rồi, mình xin bổ sung chút xíu : 

Gọi ƯCLN(12a+1,30a+1) = d (\(d\ge1\))

\(\begin{cases}12a+1⋮d\\30a+2⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(12a+1\right)⋮d\\2\left(30a+2\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}60a+5⋮d\\60a+4⋮d\end{cases}\) \(\Rightarrow\left(60a+5\right)-\left(60a+4\right)⋮d\)\(\Leftrightarrow1⋮d\)

\(\Rightarrow d\le1\) mà điều kiện \(d\ge1\)

=> d = 1. Vậy phân số trên tối giản.

Gọi ƯCLN(12a+1;30a+2) = d

Ta có: 12a+1 \(⋮\) d; 30a+2 \(⋮\)d

=> 5(12a+1) \(⋮\) d; 2(30a+2) \(⋮\) d

=> 60a+5 \(⋮\) d; 60a+4 \(⋮\)d

=> 60a+5-60a-4 \(⋮\)d

=> 1 \(⋮\) d

=> 12a+1/30a+2 tối giản

AH
Akai Haruma
Giáo viên
5 tháng 2

a/

Gọi $d=ƯCLN(n+1, 2n+3)$

$\Rightarrow n+1\vdots d; 2n+3\vdots d$

$\Rightarrow 2n+3-2(n+1)\vdots d$

$\Rightarrow 1\vdots d$

$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$

AH
Akai Haruma
Giáo viên
5 tháng 2

b/

Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé. 

Bạn xem lại đề.

18 tháng 3 2021

b) Vì 8 chia hết 2 nên 83 chia hết 2 

                 => (83 .7 ) . ( 2 . 7)

                  => (83 . 7 ) chia hết 14

               Vì 42 chia hết cho 14 nên 422 chia hết cho 14

                  vậy (83 . 7 + 422 ) chia hết 14

                 nhưng 36 ko chia hết cho 14

                 vậy phép trên ko cia hết  cho 14

18 tháng 3 2021

còn câu a nữa bn oi

11 tháng 3 2017

Vì ki phân số đó tói giản thì tử ko thể chi hết cho mẫu.

Còn một số tự nhiên thì chia hết cho mẫu.

Khi số ko chia hết cho một cộng với một số chia hết cho số đó =>Phân số đó tối giản

Khi số ko chia hết cho một trừ với một số chia hết cho số đó=> Phân số đó tối giản

1 tháng 2 2016

Ta có: a/b chưa tối giản.Gọi (a;b)=d (d #1)

=>a chia hết cho d;b chia hết cho d

=>2a chia hết cho d; 2d chia hết cho d

=>2a chia hết cho d; (a-2b) chia hết cho d

=>d thuộc ƯC(2a;a-2b)

Mà d#1

=>(2a;a-2b)#1

=>2a/a-2b chưa tối giản (đpcm)

28 tháng 2 2018

☺☺☺☺☺☺