Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình mới có lớp 5 chuẩn bị lên lớp sau nên không bt đúng hay ko: 121+1/300+
Nhìn qua thấy cách giải của mấy bạn cũng đúng rồi, mình xin bổ sung chút xíu :
Gọi ƯCLN(12a+1,30a+1) = d (\(d\ge1\))
\(\begin{cases}12a+1⋮d\\30a+2⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}5\left(12a+1\right)⋮d\\2\left(30a+2\right)⋮d\end{cases}\) \(\Leftrightarrow\begin{cases}60a+5⋮d\\60a+4⋮d\end{cases}\) \(\Rightarrow\left(60a+5\right)-\left(60a+4\right)⋮d\)\(\Leftrightarrow1⋮d\)
\(\Rightarrow d\le1\) mà điều kiện \(d\ge1\)
=> d = 1. Vậy phân số trên tối giản.
Gọi ƯCLN(12a+1;30a+2) = d
Ta có: 12a+1 \(⋮\) d; 30a+2 \(⋮\)d
=> 5(12a+1) \(⋮\) d; 2(30a+2) \(⋮\) d
=> 60a+5 \(⋮\) d; 60a+4 \(⋮\)d
=> 60a+5-60a-4 \(⋮\)d
=> 1 \(⋮\) d
=> 12a+1/30a+2 tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
b) Vì 8 chia hết 2 nên 83 chia hết 2
=> (83 .7 ) . ( 2 . 7)
=> (83 . 7 ) chia hết 14
Vì 42 chia hết cho 14 nên 422 chia hết cho 14
vậy (83 . 7 + 422 ) chia hết 14
nhưng 36 ko chia hết cho 14
vậy phép trên ko cia hết cho 14
Ta có: a/b chưa tối giản.Gọi (a;b)=d (d #1)
=>a chia hết cho d;b chia hết cho d
=>2a chia hết cho d; 2d chia hết cho d
=>2a chia hết cho d; (a-2b) chia hết cho d
=>d thuộc ƯC(2a;a-2b)
Mà d#1
=>(2a;a-2b)#1
=>2a/a-2b chưa tối giản (đpcm)
Gọi UCLN(12a+1;30a+2)=d
Ta có:12a+1 chia hết cho d =>5(12a+1) chia hết cho d =>60a+5 chia hết cho d
30a+2 chia hết cho d =>2(30a+2) chia hết cho d =>60a+4 chia hết cho d
=>(60a+5)-(60a+4) chia hết cho d
=>1 chia hết cho d
=>d=1
Vậy phân số \(\frac{12a+1}{30a+2}\) tối giản với mọi a là số nguyên
Để 12a+1/30a+2 là phân số tối giản khi ƯCLN(12a+1,30a+2)=1.(5)
Gọi d là ƯCLN(12a+1,30a+2).
Ta có : 12a+1 chia hết cho d =>5(12a+1) chia hết cho d => 60a+5 chia hết cho d. (1)
30a+2 chia hết cho d =>2(30a+2) chia hết cho d => 60a+4 chia hết cho d. (2)
Từ (1) và (2) => (60a+5)-(60a+4) chia hết cho d
=>1 chia hết cho d
=> d thuộc ước nguyên của 1
=> 12a+1 và 30a+2 nguyên tố cùng nhau. (4)
Từ (4) và (5) =>12a+1/30a+2 là phân số tối giản với mọi a thuộc Z.