K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

abcabc + 7 = abc . 1000 + abc + 7

                  = abc . 1001 + 7

                  = abc . 143 . 7 + 7

                  = 7. (abc . 143 + 1) chia hết cho 7

Mà abcabc + 7 > 1

⇒ abcabc +7 là hợp số

24 tháng 10 2016

a) abcabc + 7 = abc.1001 + 7 = abc.143.7 + 7 = 7.(abc.143 + 1) chia hết cho 7
=>  abcabc + 7 là hợp số
b) abcabc + 22 = abc.1001 + 22 = abc.11.91 + 11.2 = 11.(abc.91 + 2) chia hết cho 11
=>  abcabc + 22 là hợp số

20 tháng 10 2021

Câu 9:

Vì 2015;1020 đều chia hết cho 5

nên 2015+1020 là hợp số

21 tháng 10 2021

câu 9

Ta có 2515;1020⋮5

=>(2515+1020)⋮5

29 tháng 11 2017

ta có : A=abc.1001 +7=abc.143.7+7

          A=7.(abc.143+1)chia hết cho 7

suy ra : abc.abc+7 là hợp số

nhớ k cho mình nha.

Câu 1:

\(25^{15}+10^{20}\)

\(=5^{30}+5^{20}\cdot2^{20}\)

\(=5^{20}\left(5^{10}+2^{20}\right)⋮5^{20}\)

=>Đây là hợp số

20 tháng 7 2015

a) abcabc + 7 = abc.1001 + 7 = abc.143.7 + 7 = 7.(abc.143 + 1) chia hết cho 7

\(\Rightarrow\) abcabc + 7 là hợp số

b) abcabc + 22 = abc.1001 + 22 = abc.11.91 + 11.2 = 11.(abc.91 + 2) chia hết cho 11

\(\Rightarrow\) abcabc + 22 là hợp số

c) abcabc + 39 = abc.1001 + 39 = abc.13.77 + 13.3 = 13.(abc.77 + 3) chia hết cho 13

\(\Rightarrow\) abcabc + 39 là hợp số

20 tháng 7 2015

(Trả lời rồi mình **** cho:D ko hiểu

28 tháng 10 2015

a) abcabc + 7 = abc.1001 + 7 = abc.143.7 + 7 = 7.(abc.143 + 1) chia hết cho 7

\(\Rightarrow\) abcabc + 7 là hợp số

b) abcabc + 22 = abc.1001 + 22 = abc.11.91 + 11.2 = 11.(abc.91 + 2) chia hết cho 11

\(\Rightarrow\) abcabc + 22 là hợp số

26 tháng 7 2023

a) abcabc=abc.1000+abc=1001.abc=7.143.abc Suy ra abcabc+7=7.(143.abc+1) chia hết cho 7, suy ra dpcm

b) abcabc=1000.abc+abc=1001.abc=13.77.abc, suy ra abcabc+39=13.(77.abc+3) chia hết cho 13, suy ra dpcm

c) abcabc=1000.abc+abc=1001.abc=11.91.abc; suy ra abcabc+33=11.(91.abc+3) chia hết cho 11; suy ra dpcm.

 

26 tháng 7 2023

Bài 2: 

      29 = 29

⇒ 29.n = 29.n 

⇒ 29.n \(\in\) p ⇔ n = 1

Vậy n = 1