Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác ABCD có AC vuông góc BD và AC cắt BD tạo O
\(AB^2=0A^2+OB^2\)
\(CD^2=OC^2+OD^2\)
\(AD^2=OA^2+OD^2\)
\(BC^2=OB^2+OC^2\)
\(\Rightarrow AB^2+CD^2=OA^2+OB^2+OC^2+OD^2\)(1)
\(AD^2+BC^2=OA^2+OD^2+OB^2+OC^2\)(2)
Từ (1) và 92) \(\Rightarrow AB^2+CD^2=AD^2+BC^2\)
Giả sử \(\Delta\)ABC có hai đường trung tuyến BE và CF vuông góc với nhau, AD là đường trung tuyến thứ ba. Ta cần chứng minh AD^2 = BE^2 + CF^2
Trên tia đối của tia EF lấy điểm K sao cho EF = FK
Tứ giác AKCF có hai đường chéo cắt nhau tại trung điểm E của mỗi đường nên AKCF là hình bình hành => AK//FC. Mà FC\(\perp\)BE nên BE\(\perp\)AK (*)
Ta có: F là trung điểm của AB, E là trung điểm của AC nên EF là đường trung bình của\(\Delta\)ABC => EF = 1/2BC và EF//BC hay EK//BD (1)
Mà BD = 1/2BC (gt) nên EF = BD => EK = BD (do EF = EK theo cách chọn điểm phụ) (2)
Từ (1) và (2) suy ra EKDB là hình bình hành => EB // DK (**)
Từ (*) và (**) suy ra DK \(\perp\)AK => \(\Delta\)AKD vuông tại K => AK^2 + KD^2 = AD^2 (theo định lý Py-ta-go)
Mà AK = FC (do AKCF là hình bình hành) và KD = BE (do EKDB là hình bình hành) nên AD^2 = BE^2 + CF^2 (đpcm)
Gọi giao của AC và BD là O , do hai đường chéo vuông góc
=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1)
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2)
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3)
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4)
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5)
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6)
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 ( dpcm )
Mình làm đúng không các bạn ??? Đúng thì nha !!
a) tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành
mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có:
NP // BD và NP = BD/2
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP
tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông)
b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau
-------------
Nguồn:__|nobita|__
cách 2
a) Gọi QM giao AC tại F,AC giao BD tại K
ta có QM là đường trung bình của tam giác ADB
suy ra: QM// DB
ta có MN là đường trung bình của tam giác ABC
suy ra: MN// AC
ta có PN là đường trung bình của tam giác BCD
suy ra: PN// DB
ta có PQ là đường trung bình của tam giác ADC
suy ra: PQ// AC
từ đó ta có : QM//PN(cùng song song DB)
MN//PQ(cùng song song AC)
suy ra MNPQ là hình bình hành
QM//DB suy ra:góc AKB=góc AFM=90 độ
MN//AC suy ra:góc AFM= góc FMN= 90 độ
hình bình hành MNPQ có góc FMN=90 độ
suy ra MNPQ là hình chữ nhật
b)thuận:giả sử
MNPQ là hình vuông
suy ra MN=QM
ta có MN là đường trung bình của tam giác ABC
suy ra MN=1/2*AC
ta có QM là đường trung bình của tam giác ADC
suy ra QM=1/2*BD
MN=QM
suy ra BD= AC
vậy tứ giác ABCD cần thêm điều kiện là AC=BD để MNPQ là hình vuông
a.Gọi giao của AC và BD là O , do hai đường chéo vuông góc
=> các tam giác : OAB, OBC, OCD, ODA là các tam giác vuông tại O
xét tam giác OAB có AB^2 = OA^2 + OB^2 (1)
xét tam giác ODC có DC^2 = OD^2 + OC^2 (2)
xét tam giác OAD có AD^2 = OA^2 + OD^2 (3)
xét tam giác OBC có BC^2 = OC^2 + OB^2 (4)
từ (1) và (2)=> AB^2 + CD^2 = OA^2 +OB^2 +OC^2 +OD^2 (5)
từ (3) và (4)=> BC^2 + AD^2 = OA^2 +OB^2 +OC^2 +OD^2 (6)
từ (5) và (6) => AB^2 + CD^2 = BC^2 + AD^2 (điều phải c/m )
xin lỗi bạn
https://hoc247.net/hoi-dap/toan-7/chung-minh-dinh-ly-trong-1-tam-giac-vuong-duong-trung-tuyen-ung-voi-canh-huyen-bang-nua-canh-huyen-faq195049.html
Tham khảo nha bạn chứ mk ko biết cách chứng minh dùng đường trung bình