Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn sang hoidap247 sẽ đc giải quyết câu hỏi nhanh hơn nhé
くらにみくちなそちにきにしちんくちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちちち
Gọi 3 số lần lượt là : (x - 1) ; x ; (x + 1)
Có :
(x - 1)3 + x3 + (x + 1)3
= (x3 - 3.x2.1 + 3.x.12 - 1) + x3 + (x3 + 3.x2.1 + 3x.12 + 1)
= x3 - 3.x2.1 + 3.x.12 - 1 + x3 + x3 + 3.x2.1 + 3x.12 + 1
= 3x3 + 6x
= 3x3 - 3x + 9x
= 3x(x2 - 1) + 9x
= 3x.(x - 1)(x + 1) + 9x
Xét (x - 1).x.(x + 1) là tích 3 số nguyên liên tiếp
=> (x - 1).x.(x + 1) \(⋮\) 3
=> 3.(x - 1).x.(x + 1) \(⋮\) 9
Mà 9x \(⋮\) 9
=> (x - 1)3 + x3 + (x + 1)3 \(⋮\) 9
Gọi 3 số nguyên liên tiếp là x -1 ; x ; x + 1 .
Ta có : (x - 1)3 + x3 + (x + 1)3
= x3 - 1 - 3x(x - 1) + x3 + x3 + 1 + 3x(x + 1)
= 3x3 - 3x(x - 1 - x - 1)
= 3x3 + 6x
= 3x3 - 3x + 9x
= 3(x - 1)x(x + 1) +9x
Vì (x - 1)x(x + 1) chia hết cho 3 nên 3(x - 1)x(x + 1) chia hết cho 9
Vì 9 chia hết cho 9 nên 9x chia hết cho 9
=> 3(x - 1)x(x + 1) + 9x chia hết cho 9
=> ĐPCM
Gọi số tự nhiên là n.
Ta có:
\(n^3+\left(n+1\right)^3+\left(n+2\right)^3\)
\(=n^3+n^3+3n^2+3n+1+n^3+6n^2+12n+8\)
\(=3n^3+9n^2+15n+9\)
Ta lấy từng số hạng chia cho 9.
\(3n^3:9\left(R=3\right)\)
\(9n^2⋮9\)
\(15n:9\left(R=6\right)\)
\(9⋮9\)
Mà ta có hai R
\(\Rightarrow15n+3n^3=\left(3+6\right)=9⋮9\)
\(\Rightarrow\left(3n^3+9n^2+15n+9\right)⋮9\)
\(\Leftrightarrow\left(n^3+\left(n+1\right)^3+\left(n+2\right)^3\right)⋮9\)
Vậy tổng lập phương của ba số tự nhiên liên tiếp chia hết cho 9.
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= >3(a - 1)a(a + 1) + 9a
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
=>3(a - 1)a(a + 1) + 9a
Hay ta được điều phải chứng minh !!!!!
Gọi p số nguyên liên tiếp đó là: \(x,x+1,x+2,...,x+p-1\)
Ta có:
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+p-1\right)\equiv1+2+3+...+p-1\left(modp\right)\)
\(\Rightarrow x^2+\left(x+1\right)^2+\left(x+2\right)^2+...+\left(x+p-1\right)^2\equiv1^2+2^2+3^2+...+\left(p-1\right)^2\left(modp\right)\)
Ta lại có:
\(1^2+2^2+3^2+...+\left(p-1\right)^2=\frac{\left(p-1\right)p\left(2p-1\right)}{6}\)
Vì p là số nguyên tố lớn hơn 3 nên p không có ước 2, 3 từ đây ta thấy được là:
\(\left(p-1\right)p\left(2p-1\right)⋮6p\)
\(\Rightarrow1^2+2^2+3^2+...+\left(p-1\right)^2=\frac{\left(p-1\right)p\left(2p-1\right)}{6}⋮p\)
Vậy ta có điều phải chứng minh.