Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=3.\left(3^4\right)^{10}+2\)
Do 34 có tận cùng là 1 nên A có tận cùng là 5 nên chia hết cho 5
\(B=2.\left(2^4\right)^n+3\)
Do 24 có tận chùng là 6 nên (24)n có tận cùng là 6 => 2.(24)n có tận cùng là 2 => B có tận cùng là 5 nên chia hết cho 5
Trường hợp còn lại là tương tự
a) Ta có : A = 1028 + 8
= 100...0 + 8 (28 chữ số 0)
= 100...008 (27 chữ số 0)
Nhận xét: 1028 + 8 có 3 chữ số tận cùng là 008
lại có : Tổng của 3 chữ số này là : 0 + 0 + 8 = 8 => chia hết cho 8
=> 1028 + 8 \(⋮\)8 (1)
Nhận xét : 1028 + 8 = 100...008 (27 chữ số 0)
=> Tổng các chữ số của số trên là : 1 + 0 + 0 + .... + 0 + 0 + 8 = 9 \(⋮\)9 (27 số hạng 0)
=> 1028 + 8 \(⋮\)9(2)
Từ (1) và (2) ta có :
ƯCLN(8,9) = 1
=> 1028 + 8 \(⋮\)BCNN(8,9)
=> 1028 + 8 \(⋮\)72
Ta có :
\(10^{28}+8=100...008\)(27 chữ số 0 )
Xét \(008⋮8\Rightarrow10^{28}+8⋮8\left(1\right)\)
Xét \(1+27\times0+8=9⋮9\Rightarrow10^{28}+8⋮9\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow10^{28}+8⋮72\)
n2 chia cho chia 3 dư 1 thì ta chứng minh (n2-1) chia hết cho 3
Gọi d thuộc Ư(6n+5,4n+3)
=>6n+5 chia hết cho d ; 4n+3 chia hết cho d
=>2(6n+5) chia hết cho d ; 3(4n+3) chia hết cho d
=>(12n+10)-(12n+9) chia hết cho d
=> 1 chia hết cho d
=>d=1
Vậy 6n+5 và 4n+3 là 2 số nguyên tố cùng nhau
Ta áp dụng công thức: Nếu đem nhốt n+1 con thỏ vào n loongfthif sẽ có ít nhất 1 cái lồng nhốt từ 2 con thỏ trở lên
Áp dụng công thức trên để chứng minh \(n\in N\) cho 17n -1 \(⋮\) 25
Xét 26 con thỏ là 26 số: 17k;17k+1; ...;17k+25
Đem 26 số trên chia cho 25 ta sẽ có 26 số dư từ: 0;1;2;.....;24 (có 25 giá trị)
Nên sẽ có 2 số dư bằng nhau và trong 26 số trên có 2 số đồng dư với nhau khi chia cho 25
\(\Rightarrow\) Hiệu của 2 số đó chia hết cho 25
Hiệu 2 số có dang: 17x - 17y chia hết cho 25 ( x > y )
17y.(17x-y-1) chia hết cho 25
Mà 17y không chia hết cho 25 nên 17x-y chia hết cho 25
Đặt n=x-y nên \(17^n-1⋮25\) (đpcm)