K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2017

Ta chứng minh khẳng định đúng với mọi n ε N* , n ≥ 4.

Với n = 4, ta có tứ giác nên nó có hai đường chéo.

Mặt khác thay n = 4 vào công thức, ta có số đường chéo của tứ giác theo công thức là: = 2

Vậy khẳng định là đúng với n= 4.

Giả sử khẳng định là đúng với n = k ≥ 4, tức là đa giác lồi k cạnh có

số đường chéo là

Ta phải chứng minh khẳng định đúng với n = k + 1. Nghĩa là phải chứng minh đa giác lồi k + 1cạnh có số đường chéo là Xét đa giác lồi k + 1 cạnh Nối A1 và Ak, ta được đa giác k cạnh A1A2…Ak đường chéo (giả thiết quy nạp). Nối Ak+1 với các đỉnh A2, A3, …, Ak-1, ta được thêm k -2 đường chéo, ngoài ra A1Ak cũng là một đường chéo.

Vậy số đường chéo của đa giác k + 1 cạnh là

+ k - 2 + 1 =

Như vậy, khẳng định cũng đúng với đa giác k + 1 cạnh