K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 12 2019

Bạn có thể kiểm tra lại đề o , sai đề rồi

mình tìm thấy 1 số giá trị như x=0,x=13 là snt nha bạn

A=3n(n^2+674)

TH1: n=3k

=>A=3*3k(n^2+674)=9k(n^2+674) chia hết cho 9

TH2: n=3k+1

=>A=3(3k+1)(9k^2+6k+1+674)

=3(3k+1)(9k^2+6k+675)

=9(3k+1)(3k^2+2k+225) chia hết cho 9

TH3: n=3k+2

=>A=3(3k+2)(9k^2+12k+4+674)

=3(3k+2)(9k^2+12k+678)

=9(3k+2)(3k^2+4k+226) chia hết cho 9

29 tháng 7 2021

Gọi n số đó là \(a_1=\left(n+1\right)!+2;a_2=\left(n+1\right)!+3;...;a_n=\left(n+1\right)!+n\).

Khi đó \(a_k=\left(n+1\right)!+k+1\). (Với \(1\le k\le n\))

Dễ thấy \(k+1\le n+1\) nên \(\left(n+1\right)!⋮k+1\Rightarrow a_k⋮k+1\). Mà \(a_k>k+1\) nên \(a_k\) là hợp số.

Vậy...

 

 

24 tháng 7 2018

Ta có: 16n-1=(17-1)n-1=BS17+1-1 (vì n chẵn)=BS17\(⋮\)17  => Đpcm

24 tháng 7 2018

Ta có: 16n-1=(17-1)n-1=BS17+1-1 (vì n chẵn)=BS17\(⋮\)17  => Đpcm

20 tháng 8 2016

Với a bất kì thì ta chọn b sao cho b=a-4

Khi đó: ab+4=a(a-4)+4

                  =a2-4a+4

                  =a2-2.2.a+22

                  =(a-2)2

Vậy với a E N ta luôn tìm được b sao cho ab+4 là số chính phương

20 tháng 8 2016

gieo mưa có ngày gặp bão . hehe

DD
29 tháng 7 2021

Xét khoảng \(\left(n+1\right)!+2\)đến \(\left(n+1\right)!+n+1\).

Khoảng này có \(n\)số tự nhiên. 

Với \(k\)bất kì \(k=\overline{2,n+1}\)thì 

\(\left(n+1\right)!+k⋮k\)do đó không là số nguyên tố. 

Do đó ta có đpcm.

29 tháng 3 2022

-Ta c/m: Với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

\(\Leftrightarrow\left(n+2021\right)^2+2022-\left(n+2022\right)^2< 0\)

\(\Leftrightarrow\left(n+2021-n-2022\right)\left(n+2021+n+2022\right)+2022< 0\)

\(\Leftrightarrow-\left(2n+4043\right)+2022< 0\)

\(\Leftrightarrow-2n-4043+2022< 0\)

\(\Leftrightarrow-2n-2021< 0\) (đúng do n là số tự nhiên)

-Từ điều trên ta suy ra:

\(\left(n+2021\right)^2< \left(n+2021\right)^2+2022< \left(n+2022\right)^2\)

-Vậy với mọi số tự nhiên n thì \(\left(n+2021\right)^2+2022\) không là số chính phương.

 

1 tháng 5 2019

Ta có :

n3 + n + 2 = ( n3 + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 1 ) + ( n + 1 )

= ( n + 1 ) ( n2 - n + 2 )

Ta thấy n + 1 > 1 ; n2 - n + 2 > 1 nên n3 + n + 2 là hợp số

1 tháng 5 2019

 Do n là số tự nhiên khác 0 =) n = 2k hoặc 2k + 1 với k là stn

(+)  Nếu n = 2k =)  n^3 + n + 2 = (2k)^3 + 2k + 2 chia hết cho 2     (1)

(+)  Nếu n = 2k + 1 =)  n^3 + n + 2 = lẻ + lẻ +chẵn = chẵn chia hết cho 2     (2)

    Từ (1) và (2) ta có điều phải chứng minh