Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S = 1 + 3 + 32 + 33 + ...... + 32015
=> 3S = 3 + 32 + 33 + ...... + 32016
=> 3S - S = 32016 - 1
=> 2S = 32016 - 1
=> 2S + 1 = 32016
Vậy 2S + 1 là luỹ thừa của 1 số tự nhiên (đpcm)
1)
gọi ƯC(3n-2,4n-3) là d
=>\(\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\Rightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\Rightarrow1⋮d\Rightarrow d=1;-1\)
=>ƯC(3n-2,4n-3)={1;-1}
=>\(\frac{3n-2}{4n-3}\)là p/số tối giản
vậy...
`Answer:`
1. \(S=\frac{1}{41}+\frac{1}{42}+...+\frac{1}{80}\)
\(\Rightarrow S=\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{60}\right)+\left(\frac{1}{61}+...+\frac{1}{80}\right)\)
\(\Rightarrow S>\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)+\left(\frac{1}{80}+...+\frac{1}{80}\right)\)
\(\Rightarrow S>20.\frac{1}{60}+20.\frac{1}{80}\)
\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)
\(\Rightarrow S>\frac{7}{12}\)
2. \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}\)
Ta có:
\(2^2< 1.2\Rightarrow\frac{1}{2^2}< \frac{1}{1.2}\)
\(3^2< 2.3\Rightarrow\frac{1}{3^2}< \frac{1}{2.3}\)
\(4^2< 3.4\Rightarrow\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(2009^2< 2008.2009\Rightarrow\frac{1}{2009^2}< \frac{1}{2008.2009}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2008.2009}\)
\(\Rightarrow S< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2008}-\frac{1}{2009}\)
\(\Rightarrow S< 1-\frac{1}{2009}< 1\)
\(\Rightarrow S< 1\)
3. \(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(=\frac{1}{5}-\frac{1}{200}\)
\(=\frac{39}{200}\)
Biết n thuộc số tự nhiên khác 0. Chứng minh: 1/12+1/22 + 1/32+.......+1/n2 không phải là số tự nhiên
\(\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{n^2}>0\)
\(\frac{1}{1^1}+\frac{1}{2^2}+...+\frac{1}{n^2}
4,
Gọi ƯCLN của ( 5n+7, 7n+10) = d
Ta có:
5n+7 ⋮ d
7n+10 ⋮ d
=> 7.(5n+7) ⋮ d
5.(7n+10) ⋮ d
=> 35n + 49 ⋮ d
35n + 50 ⋮ d
=> 35n + 50 - (35n + 49) ⋮ d
=> 1 ⋮ d
=> d=1
Vậy phân số 5n+7/ 7n+10 là phân số tối giản (đpcm)
1. Nhận xét rằng a là số tự nhiên lẻ và ab + 4 là một số chẵn.
Nếu d là một ước chung của a và ab + 4 ( d > 1), thì do a lẻ nên d phải là số lẻ.
Do ab chia hết cho d nên 4 chia hết cho d, suy ra d \(\in\) { 2; 4 }. (mâu thuẫn)..
b) Gọi d là ước chung lớn nhất của n + 2 và 3n + 11.
Suy ra \(\hept{\begin{cases}n+2⋮d\\3n+11⋮d\end{cases}\Rightarrow\hept{\begin{cases}3n+6⋮d\\3n+11⋮d\end{cases}}}\).
Suy ra \(3n+11-\left(3n+6\right)=5⋮d\).
Vì vậy d = 1 hoặc d = 5.
Để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau thì d = 1.
Nếu giả sử ngược lại \(\hept{\begin{cases}n+2⋮5\\3n+11⋮5\end{cases}}\) \(\Leftrightarrow n+2⋮5\).
Suy ra \(n\) chia 5 dư 3 hay n = 5k + 3.
Vậy để n + 2 và 3n + 11 là hai số nguyên tố cùng nhau, thì n chia cho 5 dư 0, 1, 2, 4 hay n = 5k, n = 5k +1, n = 5k + 2, n = 5k + 4.
....