K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2017

|x - 1| + 2x - 3 = m

*Xét x>=1, ta có phương trình :

x - 1 + 2x - 3 =m

=> x = (m + 4)/3(1)

*Xét x<1, ta có phương trình :

1 - x + 2x - 3 = m

=>x = m + 2(2)

*TH1 : m>= -1

Thay vào (1) được x >= 1(t/m)

Thay vào (2) được x >= 1(không t/m)

=> Pt có nghiệm là x = (m + 4)/3

*TH2 : m< -1

Thay vào (1) được x < 1(không t/m)

Thay vào (2) được x < 1( t/m)

=> Pt có nghiệm là x = m + 2

NV
23 tháng 4 2021

 \(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)

\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)

\(\Rightarrow VT>VP\)  ; \(\forall x\)

\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm

b.

\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)

\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)

Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)

Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)

Để nghiệm pt dương

\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)

NV
23 tháng 1 2022

\(\Leftrightarrow\left(m^2-2m+3\right)x=2m-1\)

Do \(m^2-2m+3=\left(m-1\right)^2+2\ne0;\forall m\)

\(\Rightarrow\) Phương trình luôn có nghiệm duy nhất với mọi m

2 tháng 3 2018

câu 1,

a, 2(m-1)x +3 = 2m -5

<=> 2x (m-1) - 2m +8 = 0  (1)

Để PT (1) là phương trình bậc nhất 1 ẩn thì:  m - 1 \(\ne\)0 <=> m\(\ne\)1

b, giải PT: 2x +5 = 3(x+2)-1

<=> 2x + 5 -3x -6 + 1 =0

<=> -x = 0

<=>  x = 0

Thay vào (1) ta được: -2m + 8 =0

<=> -2m = -8

<=> m = 4 (t/m)

vậy m = 4 thì pt trên tương đương.................