Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|x - 1| + 2x - 3 = m
*Xét x>=1, ta có phương trình :
x - 1 + 2x - 3 =m
=> x = (m + 4)/3(1)
*Xét x<1, ta có phương trình :
1 - x + 2x - 3 = m
=>x = m + 2(2)
*TH1 : m>= -1
Thay vào (1) được x >= 1(t/m)
Thay vào (2) được x >= 1(không t/m)
=> Pt có nghiệm là x = (m + 4)/3
*TH2 : m< -1
Thay vào (1) được x < 1(không t/m)
Thay vào (2) được x < 1( t/m)
=> Pt có nghiệm là x = m + 2
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
\(\Leftrightarrow\left(m^2-2m+3\right)x=2m-1\)
Do \(m^2-2m+3=\left(m-1\right)^2+2\ne0;\forall m\)
\(\Rightarrow\) Phương trình luôn có nghiệm duy nhất với mọi m
câu 1,
a, 2(m-1)x +3 = 2m -5
<=> 2x (m-1) - 2m +8 = 0 (1)
Để PT (1) là phương trình bậc nhất 1 ẩn thì: m - 1 \(\ne\)0 <=> m\(\ne\)1
b, giải PT: 2x +5 = 3(x+2)-1
<=> 2x + 5 -3x -6 + 1 =0
<=> -x = 0
<=> x = 0
Thay vào (1) ta được: -2m + 8 =0
<=> -2m = -8
<=> m = 4 (t/m)
vậy m = 4 thì pt trên tương đương.................