K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 12 2018

Lời giải:
\(x+y+z=2018; \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2018}\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow \frac{x+y}{xy}+\frac{x+y}{z(x+y+z)}=0\)

\(\Leftrightarrow (x+y)\left[\frac{1}{xy}+\frac{1}{z(x+y+z)}\right]=0\)

\(\Leftrightarrow (x+y).\frac{z(x+y+z)+xy}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y).\frac{(z+x)(z+y)}{xyz(x+y+z)}=0\)

\(\Leftrightarrow (x+y)(y+z)(x+z)=0\)

\(\Rightarrow \left[\begin{matrix} x+y=0\\ y+z=0\\ z+x=0\end{matrix}\right.\Rightarrow \left[\begin{matrix} x+y+z=z\\ x+y+z=x\\ x+y+z=y\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} 2018=z\\ 2018=x\\ 2018=y\end{matrix}\right.\)

Tức là trong ba số $x,y,z$ phải có ít nhất một số bằng $2018$

23 tháng 1 2018

Ta co : \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{x+y+z}\)

=> \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x+y+z}-\dfrac{1}{z}\)

=> \(\dfrac{x+y}{xy}=\dfrac{-x-y}{z\left(x+y+z\right)}\)

=> \(\left(x+y\right)\left(x+y+z\right)z+\left(x+y\right)xy=0\)

=> (x+y)(xz+zy+z2+xy)=0

=> (x+y)(x+z)(y+z)=0

=> x+y=0 hoac x+z=0 hoac y+z=0 , do x+y+z=2018

=> z=2018 hoac y=2018 hoac z=2018

=> DPCM

18 tháng 4 2020

Từ gt, ta có \(\left(xyz\right)^2=\left[x\left(1-x\right)\right]\left[y\left(1-y\right)\right]\left[z\left(1-z\right)\right]\)

Sử dụng BĐT AM-GM dạng \(ab\le\frac{\left(a+b\right)^2}{4}\), ta có:

\(x\left(1-x\right)\le\frac{1}{4};y\left(1-y\right)\le\frac{1}{4};z\left(1-z\right)\le\frac{1}{4}\)

Nhân các bđt trên lại theo vế =. \(\left(xyz\right)^2\le\frac{1}{64}\)hay \(xyz\le\frac{1}{8}\)

Gọi A là số lớn nhất trong các số x(1-y);y(1-z); z(1-y)

khi đó từ gt, ta có:

\(3A\ge x\left(1-y\right)+y\left(1-z\right)+z\left(1-x\right)\)

\(=1-xyz-\left(1-x-y-z+xy+yz+zx-xyz\right)\)

\(=1-xyz-\left(1-x\right)\left(1-y\right)\left(1-z\right)\)

\(=1-2xyz\ge\frac{3}{4}\)

từ các đánh giá trên => \(A\ge\frac{1}{4}\)

=> đpcm

24 tháng 1 2018

Bài 1: Cho ba số x,y,z khác 0 thỏa mãn:
{xyz=11x+1y+1z<x+y+z{xyz=11x+1y+1z<x+y+z
Chứng minh rằng có đúng một trong ba số x,y,z lớn hơn 1.

{xyz=11x+1y+1z<x+y+z⇔{xyz=1xyz(1x+1y+1z)<x+y+z{xyz=11x+1y+1z<x+y+z⇔{xyz=1xyz(1x+1y+1z)<x+y+z
⇔{xyz=1xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0⇔{xyz=1xy+yz+zx<x+y+z⇔{xyz=1x+y+z−(xy+yz+zx)>0
Xét tích:
(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0⇒(x−1)(y−1)(z−1)>0(x−1)(y−1)(z−1)=xyz−(xy+yz+zx)+(x+y+z)−1=x+y+z−(xy+yz+zx)>0⇒(x−1)(y−1)(z−1)>0
Vậy trong 3 số x,y,zx,y,z có 1 số lớn hơn 1, 2 số nhỏ hơn 1 hoặc cả 3 số lớn hơn 1
Tuy nhiên, nếu x,y,z>1⇒xyz>1x,y,z>1⇒xyz>1. Mâu thuẫn với gt
Vậy ta có ĐPCM 

23 tháng 9 2018

Từ x+y+z=3 ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\frac{\Leftrightarrow xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

Nhân chéo ta có:

\(\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xyz+x^2z+y^2x+y^2z+xyz+xyz+z^2y+z^2x=xyz\)

\(\Leftrightarrow x^2y+x^2z+y^2z+y^2x+z^2x+z^2y+2xyz=0\)

\(\Leftrightarrow\left(x^2y+x^2z+y^2x+xyz\right)+\left(y^2z+z^2x+z^2y+xyz\right)=0\)

\(\Leftrightarrow x\left(xy+xz+y^2+yz\right)+z\left(xy+xz+y^2+yz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left(xy+xz+y^2+yz\right)=0\)

\(\Leftrightarrow\left(x+z\right)\left[\left(xy+y^2\right)+\left(xz+yz\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left[y\left(x+y\right)+z\left(x+y\right)\right]=0\)

\(\Leftrightarrow\left(x+z\right)\left(y+z\right)\left(x+y\right)=0\)

Suy ra x+z=0 hoặc y+z=0 hoặc x+y=0

Với x+z=0 ta đc y=3

Với y+z=0 ta đc x=3

Với x+y=0 ta đc z=3

Từ đó suy ra đccm

22 tháng 5 2015

Từ x+y+z=2015 => \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z\Rightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{xz+yz+z^2}\right)=0\Rightarrow\frac{\left(x+y\right)\left(xy+yz+zx+z^2\right)}{xyz\left(x+y+z\right)}=0\)

\(\Rightarrow\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz\left(x+y+z\right)}=0\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)(Do x,y,z khác 0)

Mà x+y+z=2015 và (x+y)(y+z)(x+z)=0

=> x+y=0 => z =2015

hoặc y+z=0 => x=2015

hoặc x+z=0 => y=2015

                         Vậy nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=x+y+z=2015\)thì ít nhất 1 trong 3 số x,y,z bằng 2015(ĐPCM)

               lik.e nhé!

30 tháng 10 2017

đề có sai k vậy bạn?