Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
Ta chứng minh p+1 là số chính phương:
Giả sử phản chứng p+1 là số chính phương . Đặt p+1 = m² (m∈N)
Vì p chẵn nên p+1 lẻ => m² lẻ => m lẻ.
Đặt m = 2k+1 (k∈N). Ta có m² = 4k² + 4k + 1 => p+1 = 4k² + 4k + 1 => p = 4k² + 4k = 4k(k+1) chia hết cho 4. Mâu thuẫn với (*)
Vậy giả sử phản chứng là sai, tức là p+1 là số chính phương
Ta chứng minh p-1 là số chính phương:
Ta có: p = 2.3.5… là số chia hết cho 3 => p-1 có dạng 3k+2.
Vì không có số chính phương nào có dạng 3k+2 nên p-1 không là số chính phương .
Vậy nếu p là tích n số nguyên tố đầu tiên thì p-1 và p+1 không là số chính phương (đpcm)
Gọi 2 số đó là u và v
Viết u = ax.by.cz.... (a;b;c là thừa số nguyên tố)
v = pm.qn.rt.... (p;q;r,.. là thừa số nguyên tố)
Vì u, v nguyên tố cùng nhau nên a;b;c ;p;q;r,... khác nhau
=> u.v =( ax.by.cz....). (pm.qn.rt....) = ax.by.czpm.qn.rt....
Do u.v là số chính phương mà; a;b;c;p;q;r,... khác nhau nên x;y;x;m;n;t,.. là số chẵn
=> u; v là số chính phương
Câu trả lời rất hay