K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2021

(abc) chia hết cho 37

->100.a + 10.b + c chia hết cho 37 

-> 1000.a + 100.b + 10.c chia hết cho 37 

-> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 

-> 100.b + 10.c + a = (bca) chia hết cho 37 (bca) chia hết cho 37

-> 100.b+10.c+a chia hết cho 37 

-> 1000.b + 100.c + 10.a chia hết cho 37 

-> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37) 

-> 100.c + 10.a + b = (cab) chia hết cho 37

28 tháng 3 2016

(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37 
=> 1000.a + 100.b + 10.c chia hết cho 37 
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
=> 100.b + 10.c + a = (bca) chia hết cho 37 

31 tháng 10 2016

\(\overline{abc}+\overline{bca}+\overline{cab}=\left(100a+10b+c\right)+\left(100b+10c+a\right)+\left(100c+10a+b\right)\)

\(=111\left(a+b+c\right)=37\times3\times\left(a+b+c\right)⋮37\)

26 tháng 2 2020

a) Do : \(\overline{abc}⋮37\)

\(\Leftrightarrow100a+10b+c⋮37\)

\(\Rightarrow1000a+100b+10c⋮37\)

Lại có : \(999a⋮37\)

\(\Rightarrow1000a-999a+100b+10c⋮37\)

\(\Leftrightarrow100b+10c+a⋮37\)

\(\Leftrightarrow1000b+100c+10a⋮37\)

\(\Leftrightarrow1000b-999b+100c+10a⋮37\)

\(\Leftrightarrow100c+10a+b⋮37\)

hay : \(\overline{cab}⋮37\) (ddpcm)

b) Ta có : \(xy+12=x+y\)

\(\Leftrightarrow x+y-xy=12\)

\(\Leftrightarrow x\left(1-y\right)-\left(1-y\right)=11\)

\(\Leftrightarrow\left(x-1\right)\left(1-y\right)=11\)

Do đó : x-1 và y-1 là các cặp ước của 11

Rồi bạn lập bảng xét các ước của 11.

a.Xét tổng\(11.\overline{abc}+\overline{cab}\)ta có:

\(11.\overline{abc}+\overline{cab}=1110a+111b+111c=111\left(10a+b+c\right)=37.3\left(10a+b+c\right)⋮37\)

Mà \(11.\overline{abc}⋮37\Rightarrow\overline{cab}⋮37\)

13 tháng 10 2018

a) Giả sử abcdeg chia hết cho 37                     —> 999abc+(abc+deg) chia hết cho 37

—> 999abc chia hết cho 37  vì 999 :37 ko dư                                                     —>abc + deg  chia hết cho 37

16 tháng 12 2017

chứng minh:bca⋮37

bca=b.100+c.10+a

bca=b.100+c.10+a.1

bca=(b+c+a).(100+10+1)

bca=(b+c+a).111

bca=(b+c+a).3.37

⇒bca⋮37

8 tháng 10 2023

abc chia hết cho 37 thì => 100.a + 10.b + c chia hết cho 37 
1000.a + 100.b + 10.c chia hết cho 37 
1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37) 
100.b + 10.c + a = chia hết cho 37 (bca)

3 tháng 2 2023

Bài 1:

a)

\(\overline{abcd}=100\overline{ab}+\overline{cd}\)

\(=100.2\overline{cd}+\overline{cd}\)

\(=201\overline{cd}\)

Mà \(201⋮67\)

\(\Rightarrow\overline{abcd}⋮67\)

b)

\(\overline{abc}=100\overline{a}+10\overline{b}+\overline{c}\)

\(=\left(100\overline{b}+10\overline{c}+\overline{a}\right)+\left(99\overline{a}-90\overline{b}-9\overline{c}\right)\)

\(=\overline{bca}+9\left[\left(12\overline{a}-9\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)\right]\)

\(=\overline{bca}+27\left(4\overline{a}-3\overline{b}\right)-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\overline{bca}-\left(\overline{a}+\overline{b}+\overline{c}\right)⋮27\)

\(\Rightarrow\left\{{}\begin{matrix}\overline{bca}⋮27\\\overline{a}+\overline{b}+\overline{c}⋮27\end{matrix}\right.\)

\(\Rightarrow\overline{bca}⋮27\)

Bài 2:

\(\overline{abcd}=\overline{ab}.100+\overline{cd}\)

\(=\overline{ab}.99+\overline{ab}+\overline{cd}\)

\(=\overline{ab}.11.99+\left(\overline{ab}+\overline{cd}\right)\)

Mà \(11⋮11\)

\(\Rightarrow\overline{ab}.11.9⋮11\)

\(\Rightarrow\overline{abcd}⋮11\).

 

 

3 tháng 2 2023

Các bạn giải nhanh cho mình nhé. Thanks!