K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2017

Bài giải:

Với \(a,b,c,d\ne0\) ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\Rightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\Rightarrow\dfrac{a+b}{c+d}=\dfrac{b}{d}\left(1\right)\)

\(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\Rightarrow\dfrac{a-b}{c-d}=\dfrac{b}{d}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}=\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(ĐPCM\right)\)

13 tháng 10 2017

Đặt:

\(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)

Khi đó:

\(\dfrac{a+b}{a-b}=\dfrac{bt+b}{bt-b}=\dfrac{b\left(t+1\right)}{b\left(t-1\right)}=\dfrac{t+1}{t-1}\)

\(\dfrac{c+d}{c-d}=\dfrac{dt+d}{dt-d}=\dfrac{d\left(t+1\right)}{d\left(t-1\right)}=\dfrac{t+1}{t-1}\)

Ta có đpcm