K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2018

P/s : Đây là toán 8 .

Ta có : \(a^3+b^3+c^3-3abc\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Do đó : Nếu có \(a+b+c=0\)(gt)

thì ta có : \(a^3+b^3+c^3-3abc=0\)(2)

Đảo lại khi có \(a^3+b^3+c^3-3abc=0\)

thì ta có : \(a+b+c=0\left(1\right)\)

\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)(3)

Từ (3) ta có : \(a=b=c\)(4)

Vậy nếu có \(a^3+b^3+c^3=3abc\)

\(\Rightarrow a+b+c=0\)( a=b=c )

\(\Rightarrow a^3+b^3+c^3=3abc\Rightarrow a+b+c=0\) (2) => (1)

\(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)(2)=>(4)

15 tháng 2 2018

Từ \(a+b+c=0\Leftrightarrow a+b=-c\)

                                    \(\Leftrightarrow\left(a+b\right)^3=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+3ab\left(-c\right)=-c^3\)

                                     \(\Leftrightarrow a^3+b^3+c^3=3abc\)

20 tháng 10 2015

http://olm.vn/hoi-dap/question/228341.html    ở đây nè