K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2018

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge a+b+c\)

\(\Rightarrow ab+bc+ca\ge abc\left(a+b+c\right)\)

Lại có: \(\frac{\left(a+b+c\right)^2}{3}\ge ab+bc+ca\)

\(\Rightarrow\frac{\left(a^2+b+c\right)}{3}\ge abc\left(a+b+c\right)\)

\(\Rightarrow a+b+c\ge3abc\)

22 tháng 7 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b+c}-\frac{1}{c}\)

\(\Leftrightarrow\frac{a+b}{ab}=\frac{c-a-b-c}{c\left(a+b+c\right)}\Leftrightarrow\frac{a+b}{ab}=\frac{-\left(a+b\right)}{ac+bc+c^2}\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)=-\left(a+b\right)ab\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2\right)+\left(a+b\right)ab=0\)

\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left[a\left(b+c\right)+c\left(b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

<=> a +  b = 0 hoặc b + c = 0 hoặc c + a = 0

<=> a = -b hoặc b = -c hoặc c = -a

Vậy...

22 tháng 7 2018

Ta có : 

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)=abc\)

\(\Rightarrow\left(bc+ac+ab\right)\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow\hept{\begin{cases}a+b=0\\b+c=0\\c+a=0\end{cases}}\)

21 tháng 7 2018

 Ta có: 
1/a + 1/b + 1/c=1 / (a + b + c) 
Vậy nên 1/a + 1/b + 1/c - 1/ (a + b + c) = 0 
=> (a + b) / ab + (a + b) / c (a + b + c)=0 (cộng 2 số đầu với nhau và 2 số còn lại với nhau) 
=> (a + b) ( 1 / ab - 1 / c (a + b + c)) = 0. 
=> (a + b) (c (a + b + c)) + ab ) / ( -ab (a + b +c)) =0 
=> (a + b) (ac +bc +c^2 + ab) / ( - ab (a + b + c)) =0=0 
=> (a + b) ( c (b + c) + a (c +b)) / ( - ab (a + b + c)) =0 
=> (a + b) (b +c) ( c + a) / ( - ab (a + b + c)) =0 
=> a + b =0 hay b + c =0 hay c + a =0, vậy 2 trong 3 số a, b, c có 2 số đối nhau ( vì 2 số đối nhau cộng lại mới bằng 0)

21 tháng 7 2018

Theo bài ra ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Rightarrow\frac{bc+ca+ab}{abc}=\frac{1}{a+b+c}\)

\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)=abc\)

\(\Rightarrow\left(bc+ca+ab\right)\left(a+b+c\right)-abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a+b=0\)( vì \(a=-b\))

\(b+c=0\)(vì \(b=-c\))

\(c+a=0\)( vì c=-a )

8 tháng 9 2019

Cho 4 số a,b,c,d khác 0 thỏa mãn abcd=1 và a+b+c+d=1/a+1/b+1/c+/1d. chứng minh rằng tồn tại tích hai số trong 4 số bằng 

3 tháng 10 2019

dùng bất đẳng thức cosi vs 2 cái: vd:a/b^3+ab

hok tốt