Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(abc=1\Rightarrow\left(abc\right)^2=a^2b^2c^2=1\Rightarrow a^2=\frac{1}{b^2c^2}\Rightarrow\frac{1}{a^3\left(b+c\right)}=\frac{b^2c^2}{a\left(b+c\right)}=\frac{\left(bc\right)^2}{ab+ac}\)
Chứng minh tương tự ta có: \(\frac{1}{b^3\left(c+a\right)}=\frac{\left(ca\right)^2}{bc+ba};\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{ca+cb}\)
=> \(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}=\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\)
Áp dụng bđt Cauchy-Schwarz dạng Engel: \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{\left(ab+bc+ca\right)^2}{bc+ca+ab+ca+ab+bc}=\frac{ab+bc+ca}{2}\)
Tiếp tục áp dụng bđt Cauchy với 3 số dương ta được: \(\frac{ab+bc+ca}{2}\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3\sqrt[3]{\left(abc\right)^2}}{2}=\frac{3\sqrt[3]{1}}{2}=\frac{3}{2}\)
=> \(\frac{\left(ab\right)^2}{bc+ca}+\frac{\left(bc\right)^2}{ab+ca}+\frac{\left(ca\right)^2}{ab+bc}\ge\frac{ab+bc+ca}{2}\ge\frac{3}{2}\)
ta có:\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(c+a\right)}+\frac{1}{c^3\left(a+b\right)}\)
=\(\frac{\frac{1}{a^2}}{a\left(b+c\right)}+\frac{\frac{1}{b^2}}{b\left(a+c\right)}+\frac{\frac{1}{c^2}}{c\left(a+b\right)}\)
>= \(\frac{\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)^2}{a\left(b+c\right)+b\left(c+a\right)+c\left(a+b\right)}\)(BĐT Svaxo)=\(\frac{\left(\frac{ab+bc+ca}{abc}\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)
>= \(\frac{3\sqrt[3]{a^2b^2c^2}}{2}\left(BĐTAM-GM\right)=\frac{3}{2}\)(đpcm)
dấu = khi a=b=c=1
Ta có:
\(\frac{1}{a^2+2b^2+3}=\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\le\frac{1}{2ab+2b+2}=\frac{1}{2}\cdot\frac{1}{ab+b+1}\)
Tương tự CM được:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\cdot\frac{1}{bc+c+1}\) và \(\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\cdot\frac{1}{ca+a+1}\)
\(\Rightarrow VT\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ca+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab^2c+abc+ab}+\frac{b}{abc+ab+b}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{b+1+ab}+\frac{b}{1+ab+b}\right)=\frac{1}{2}\cdot1=\frac{1}{2}\)
Dấu "=" xảy ra khi: a = b = c = 1
A=\(\frac{1}{a^2+2b^2+3}\)+\(\frac{1}{b^2+2c^2+3}\)+\(\frac{1}{c^2+2a^2+3}\)
ta có: \(\frac{1}{a^2+2b^2+3}\)=\(\frac{1}{\left(a^2+b^2\right)+\left(b^2+1\right)+2}\)\(\le\)\(\frac{1}{2\left(ab+b+1\right)}\)
vì : a2+b2\(\ge\)2\(\sqrt{a^2b^2}\)=2ab
b2+1\(\ge\)2\(\sqrt{b^2x1}\)=2b
cmtt => A\(\le\)\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{1}{bc+c+1}\)+\(\frac{1}{ca+a+1}\))
=\(\frac{1}{2}\)x(\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab^2c+abc+ab}\)+\(\frac{b}{cba+ab+b}\))
=\(\frac{1}{2}\)x (\(\frac{1}{ab+b+1}\)+\(\frac{ab}{ab+b+1}\)+\(\frac{b}{ab+b+1}\))=\(\frac{1}{2}\)x\(\frac{ab+b+1}{ab+b+1}\)=\(\frac{1}{2}\)
dấu "=" xảy ra <=> a=b=c=1
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath
a) Chứng minh được BĐT \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\)(*)
Dấu "=" xảy ra <=> a=b
Áp dụng BĐT (*) vào bài toán ta có:
\(\hept{\begin{cases}\frac{1}{2x+y+z}=\frac{1}{x+y+x+y}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{1}{x+2y+z}=\frac{1}{x+y+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{1}{x+y+2z}=\frac{1}{x+y+z+z}\le\frac{1}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\)
Tiếp tục áp dụng BĐT (*) ta có:
\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right);\frac{1}{y+z}\le\frac{1}{4}\left(\frac{1}{y}+\frac{1}{z}\right);\frac{1}{z+x}\le\frac{1}{4}\left(\frac{1}{z}+\frac{1}{x}\right)\)
\(\Rightarrow\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{4}\cdot2\cdot\frac{1}{4}\cdot2\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=1\)
\(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le1\)
Dấu "=" xảy ra <=> \(x=y=z=\frac{3}{4}\)
b) áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)ta có:
\(\hept{\begin{cases}\frac{1}{a+b-c}+\frac{1}{b+c-a}\ge\frac{4}{a+b-c+b+c-a}=\frac{4}{2b}=\frac{2}{b}\\\frac{1}{b+c-a}+\frac{1}{a+c-b}\ge\frac{4}{b+c-a+a+c-b}=\frac{4}{2c}=\frac{2}{c}\\\frac{1}{a+b-c}+\frac{1}{a+c-b}\ge\frac{4}{a+b-c+a+c-b}=\frac{4}{2a}=\frac{2}{a}\end{cases}}\)
Cộng theo vế 3 BĐT ta có:
\(2VT\ge\frac{2}{a}+\frac{2}{b}+\frac{2}{c}=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=2VP\)
\(\Rightarrow VT\ge VP\)
Đẳng thức xảy ra <=> a=b=c
Câu hỏi của Mashiro Rima - Toán lớp 8 - Học toán với OnlineMath
dùng bất đẳng thức cosi vs 2 cái: vd:a/b^3+ab
hok tốt