K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 4 2018

Lời giải:

Xét hiệu \(a^2+b^2-2ab=(a-b)^2\geq 0, \forall a,b\in\mathbb{R}\)

\(\Rightarrow a^2+b^2\geq 2ab\)

\(\Rightarrow 2(a^2+b^2)\geq (a+b)^2\)

\(\Leftrightarrow 2(a^2+b^2)\geq 1\Leftrightarrow a^2+b^2\geq \frac{1}{2}\)

Ta có đpcm.
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)

AH
Akai Haruma
Giáo viên
19 tháng 5 2020

nguyễn thị thùy trang: có hai dấu suy ra thôi mà bạn, ý bạn là dấu suy ra ở dòng thứ 3 hả?

$a^2+b^2\geq 2ab$

$\Rightarrow a^2+b^2+a^2+b^2\geq a^2+b^2+2ab$

hay $2(a^2+b^2)\geq (a+b)^2$

Là vậy đó.