K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2018

Giải:

Ta có: \(\left(a-b\right)^2\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow a^2+b^2\ge2ab\)

\(\Leftrightarrow a^2+b^2+a^2+b^2\ge2ab+a^2+b^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge1^2=1\)

\(\Leftrightarrow a^2+b^2\ge\dfrac{1}{2}\left(đpcm\right)\)

Vậy ...

22 tháng 5 2018

Cách khác :

Áp dụng BĐT Bunhiacopxki vào bài toán , ta có :

( a2 + b2)( 12 + 12) ≥ ( a + b)2

⇒ a2 + b2\(\dfrac{\left(a+b\right)^2}{2}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi và chỉ khi : a = b = \(\dfrac{1}{2}\)