Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a)x378y chia hết cho 8 =>78y chia hết cho 8 (vì số có 3 chữ số cuối chia hết cho 8 thì số đó chia hết cho 8)
=>y=4
=>x3784 chia hết cho 9 => (x+3+7+8+4) chia hết cho 9
=> (x+22) chia hết cho 9
=>x=5
vậy số cần tìm là 53784
1.b)3x23y chia hết cho 5 => y chia hết cho 5
=>y= 0 hoặc 5
TH1.1: nếu y=0,x là chẵn
=>3x230 chia hết cho 11=>(3+2+0)-(x+3) hoặc (x+3)-(3+2+0) chia hết cho 11 (vì tổng các chữ số hàng chẵn - tổng các chữ số hàng lẻ chia hết cho 11 thì số đó chia hết cho 11 hoặc ngược lại)
=>5-(x+3) hoặc (x+3)-5 chia hết cho 11
ta xét điều kiện (x+3)-5 chia hết cho 11 vì 5-(x+3)>11
nếu (x+3)-5=0 thì x=2(chọn)
nếu (x+3)-5=11 thì x=13(loại)
nếu (x+3)-5>11 mà chia hết cho 11 thì x >2 (> số có 1 chữ số)
vậy số cần tìm là 32230
K CHO MÌNH NHÉ !!!!!!
bài 1
chứng minh chia hết cho 3 nè
s=\(2+2^2+2^3+...+2^{100}\)
s=\(\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
s=\(2.\left(1+2\right)+2^2.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)
s=\(2.3+2^2.3+...+2^{99}.3\)
s=\(3.\left(2+2^2+...+2^{99}\right)\)chia hết cho 3 => s chia hết cho 3(đpcm)
chứng minh chia hết cho 5
s=\(\left(2+2^2+2^3+2^4\right)+...+\left(2^{97}+2^{98}+2^{99}+2^{100}\right)\)
s=\(2.\left(1+2+4+8\right)+...+2^{97}.\left(1+2+4+8\right)\)
s=\(2.15+...+2^{97}.15\)
s=\(15.\left(2+...+2^{97}\right)\)chia hết cho 5=> s chia hết cho 5
mong là có thể giúp được bạn
S=5+5^2+5^3+....+5^96=
= 5+5^2+5^3+ 5^4+5^5+5^6....+ +5^91 + 5^92+5^93 +5^94 +5^95 +5^96
=(5+5^2+5^3+ 5^4+5^5+5^6)(1+5^6 + ... +5^90)=
=5* 126*31*(1+5^6 + ... +5^90)= 5* 126*31*(1+5^4 + ... +5^90) chia hết cho 126
a) 24n + 1 + 3 = 24n . 2 + 3 = (...6) . 2 + 3 = (....2) + 3 = (....5) ⋮ 5
b) 24n + 2 + 1 = 24n . 22 + 1 = (...6) . 4 + 1 = (...4) + 1 = (....5) ⋮ 5
c) 92n+1 + 1 = 92n . 9 + 1 = (...1) . 9 + 1 = (....9) + 1 = (....0) ⋮ 10
Hok tốt
\(n=5^0+5^1+...+5^{2019}\)
\(n=\left(5^0+5^3\right)+\left(5^1+5^4\right)+...+\left(5^{2016}+5^{2019}\right)\)
\(n=\left(5^0+5^3\right)+5\left(5^0+5^3\right)+...+5^{2016}\left(5^0+5^3\right)\)
\(n=126+5\cdot126+...+5^{2016}\cdot126\)
\(n=126\left(1+5+...+5^{2016}\right)⋮126\) (đpcm)
________
\(n=5^0+5^1+...+5^{2019}\)
\(n=5^0+\left(5^1+5^2\right)+...+\left(5^{2017}+5^{2018}\right)+5^{2019}\)
\(n=5^0+\left(5^1+5^2\right)+...+5^{2016}\left(5^1+5^2\right)+5^{2019}\)
\(n=5^0+30+...+5^{2016}\cdot30+5^{2019}\)
\(n=5^0+30\left(1+5^2+...+5^{2016}\right)+5^{2019}\)
Đến đây bí =))
Cbht