K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Với mọi số tự nhiên n.

Ta có: \(n^2+n+1=n\left(n+1\right)+1\)

Do n; n + 1 là hai số tự nhiên liên tiếp 

=> n ( n + 1) chia hết cho 2.

=> n ( n+ 1)  + 1 không chia hết chia hết cho 2

=> \(n^2+n+1\)không chia hết cho 2

=> \(n^2+n+1\) không chia hết cho 4.

Giả sử như mệnh đề trên đúng : 
n^2+1 chia hết cho 4 
* Nếu n chẵn : n = 2k , k thuộc N 
=> n^2 +1 = 4k^2 +1 k chia hết cho 4 
* nếu n lẻ : n = 2k + 1 
=> n^2 +1 = 4k^2 +4k +2 
=> n^2 +1 = 4k(k+1)+2 
k , k +1 là 2 số tự nhiên liên tiếp 
=> k(k+1) chia hết cho 2 
=> 4k(k+1)chia hết cho 4 
=> 4k(k+1)+2 chia cho 4 , dư 2 
=> 4k (k+1)+2 k chia hết cho 4

9 tháng 6 2016

a) \(A=n^3+3n^2+2n=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)\)

Với mọi n nguyên thì A là tích của 3 số nguyên liên liếp nên A chia hết cho 3. ĐPCM

b) A chia hết cho 3 với mọi n nguyên. Vì vậy, để A chia hết cho 15 thì A sẽ chia hết cho 5.

Các giá trị nguyên dương nhỏ hơn 10 của n là: 3;4;5;8;9

9 tháng 6 2016

a) A = n3 +3n2 + 2n

A = n3 + n2 + 2n2 + 2n

A = n2.( n+1) + 2n.(n+1)

A = (n+1).(n2+2n)

A = (n+1).n.(n+2)

A = n.(n+1).(n+2)

Vì n.(n+1).(n+2) là tích 3  số nguyên liên tiếp nên n.(n+1).(n+2) chia hết cho 3

=> A chia hết cho 3

Chứng tỏ A chia hết cho 3 với mọi n nguyên

b) Ta có: 15 = 3.5

Mà (3,5)=1, A chia hết cho 3 nên ta phải tìm n nguyên dương để A chia hết cho 5

Do A = n.(n+1).(n+2) nên để A chia hết cho 5 thì trong 3 số n;n+1;n+2 có 1 số chia hết cho 5

Mặt khác n<10 nên n<n+1<n+2<12

Ta có các nhóm số thỏa mãn là: 3.4.5 ; 4.5.6 ; 5.6.7 ; 8.9.10 ; 9.10.11

Vậy các giá trị của n tìm được là: 3;4;5;8;9

2 tháng 1 2017



n2+n+2016
=n2+n+1+2015
Ta xét ra 5 trường hợp n2 có chữ số tận cùng là: 1,4,5,6,9.
Bc cuối bạn có thể tự làm nhé.
Chúc may mắn!!!
 

2 tháng 1 2017

+) Xét n=5k

=>\(n^2+n+2016=25k^2+5k+2016=5\left(5k^2+k+403\right)+1\) không chia hết cho 5

+) Xét n=5k+1

=>\(n^2+n+2016=\left(5k+1\right)^2+5k+1+2016=25k^2+10k+1+5k+1+2016\)

\(=25k^2+15k+2018=5\left(5k^2+3k+403\right)+3\) không chia hết cho 5

+) Xét n=5k+2

=>\(n^2+n+2016=\left(5k+2\right)^2+5k+2+2016=25k^2+20k+4+5k+2+2016\)

\(=25k^2+25k+2022=5\left(5k^2+5k+404\right)+2\) không chia hết cho 5

+) Xét n=5k+3

=>\(n^2+n+2016=\left(5k+3\right)^2+5k+3+2016=25k^2+30k+9+5k+3+2016\)

\(=25k^2+35k+2028=5\left(5k^2+7k+405\right)+3\) không chia hết cho 5

+) Xét n=5k+4

=>\(n^2+n+2016=\left(5k+4\right)^2+5k+4+2016=25k^2+40k+16+5k+4+2016\)

\(=25k^2+45k+2036=5\left(5k^2+9k+407\right)+1\) không chia hết cho 5

Từ 5 trường hợp trên => đpcm

9 tháng 10 2015

trong các số tự nhiên, bạn luôn thấy : số chẵn . 1 số bất kì = số chẵn
thật vậy, bạn luôn có số chẵn 2n và một số k bất kì với n và k thuộc N
khi đó bạn có 2n.k luôn chia hết cho 2 => số chẵn
tương tự ta có:
8n = 2n.4 (với k = 4) => số chẵn
ta có số chẵn + (1 số lẻ) = số lẻ => 2n.4 + 1 là 1 số lẻ => 8n + 1 là 1 số lẻ
hoàn toàn tương tự với 6n + 5. với 2n.3 (k ở đây =3) => 6n là số chẵn. => 6n + 5 là số lẻ
=> không chia hết cho 2
=> bạn có (8n + 1) không chia hết cho 2 với mọi n thuộc N
(6n + 5) không chia hết cho 2 với mọi n thuộc N
=> (8n+1)(6n+5) không chia hết cho 2 với mọi n thuộc N
 

8 tháng 12 2016

\(n^2\)- n = nn - n.1 =  n . ( n - 1)

Mà n và n-1 là 2 số tự nhiên liên tiếp hay n và n-1 là một số lẻ hoặc một số chẵn

\(\Rightarrow\)  n chia hết cho 2 hoặc (n-1) chia hêt cho 2

\(\Rightarrow\) n.(n-1) chia hết cho 2 hay \(n^2\)- n chia hết cho 2

13 tháng 8 2017

Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3. 
Chúc bạn học giỏi

nhớ k mk nha cac  bn

13 tháng 8 2017

vì mọi số đó trong thế vào n như 1 thì n +2 mà n= 1 thì bằng  3 thì tích đó chia hết cho 3 mà mọi số + 1 x số đó +2 thì trong đó sẽ  có 1 lần chia hết cho 3 nhân với 1 số ko chia hết cho 3

12 tháng 8 2017

Ta thấy : \(n.\left(n+1\right).\left(n+2\right)\)là tích của ba số tự nhiên liên tiếp 

Vì n , n +1 , n +2 là ba số tự nhiên liên tiếp nên một trong ba số có một số chia hết cho 3 , một số chia 3 dư 1 , một số chia 3 dư 2 

Khi đó \(n.\left(n+1\right).\left(n+2\right)⋮3\)

Vậy .....

12 tháng 8 2017

Vì n, n+1, n+2 là ba số tự nhiên (hoặc số nguyên) liên tiếp nên khi chia cho 3 sẽ có ba số dư khác nhau là 0, 1, 2 suy ra n(n+1)(n+2) chia hết cho 3. 
Chúc bạn học giỏi

nhớ mk nha