K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2023

bài 2 bn nên cộng 3 cái lại

mà năm nay bn lên đại học r đúng k ???

7 tháng 4 2017

Giả sử a,b,c,d khác nhau ta có

\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\) 

\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(< 1-\frac{1}{5}< 1\)(trái với giả thiết)

=> điều giả sử là sai => ĐPCM

7 tháng 4 2017

Giả sử a,b,c,d khác nhau, thì ta sẽ có:

 \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{1}{d^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}\)

\(< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}\)

\(< 1-\frac{1}{5}< 1\) (trái với giả thiết)

= > điều giả sử sai = > ĐPCM

3 tháng 5 2018

Ta có f(7) = a.7^3+2.b.7^2+3.c.7+4d = 343a +98b+21c+4d

Lại có f(3)= \(a.3^3+2.b.3^2+3.c.3+4.d=27a+18b+9c+4d\\ \) 

Giả sử phản chứng : Nếu f(7) và f(3) đồng thời bằng 73 và 58 thì suy ra : \(f\left(7\right)-f\left(3\right)=\left(343a-27a\right)+\left(98b-18b\right)+\left(21c-9c\right)+\left(4d-4d\right)=73-58=15\)

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=316a+90b+12c=15\)

Mà ta thấy các đơn thức chỉ có dạng chung duy nhất là 2k

\(\Rightarrow\)\(f\left(7\right)-f\left(3\right)=2k=15\)

Mà 15 ko chia hết cho 2 , suy ra giả sử sai

\(\Rightarrow\)\(\left(ĐPCM\right)\)

4 tháng 5 2018

Chỗ "các đơn thức chỉ có dạng chung duy nhất là 2k" ấy mình thấy thay bằng:

Mà \(f\left(7\right)-f\left(3\right)=316a+90b+12c\)

                               \(=2\left(158a+45b+6c\right)⋮2\)

                                 =>ĐCCM

hay hơn.

Dù sao thì cũng cho bạn !!!

16 tháng 5 2022

Xét : \(\left(a^2+b^2+c^2+d^2\right)-\left(a+b+c+d\right)\)

 

        \(=a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\)

 

Vì \(a\) là  số nguyên dương nên \(a,\left(a-1\right)\) là hai số tự nhiên liên tiếp . 

 

\(\Rightarrow a\left(a-1\right)\) chia hết cho 2. Tương tự ta có : \(b\left(b-1\right);c\left(c-1\right);d\left(d-1\right)\) đều chia hết cho 2.

 

\(\Rightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)+d\left(d-1\right)\) là số chẵn . 

 

Lại có : \(a^2+c^2=b^2+d^2\Rightarrow a^2+b^2+c^2+d^2=2\left(b^2+d^2\right)\) là số chẵn .

 

Do đó : \(a+b+c+d\) là số chẵn mà \(a+b+c+d>2\) (Do \(a,b,c,d\inℕ^∗\))

 

Vậy : \(a+b+c+d\) là hợp số .

29 tháng 3

Xét : (�2+�2+�2+�2)−(�+�+�+�)

        =�(�−1)+�(�−1)+�(�−1)+�(�−1)

Vì  là  số nguyên dương nên �,(�−1) là hai số tự nhiên liên tiếp . 

⇒�(�−1) chia hết cho 2. Tương tự ta có : �(�−1);�(�−1);�(�−1) đều chia hết cho 2.

⇒�(�−1)+�(�−1)+�(�−1)+�(�−1) là số chẵn . 

Lại có : �2+�2=�2+�2⇒�2+�2+�2+�2=2(�2+�2) là số chẵn .

Do đó : �+�+�+� là số chẵn mà �+�+�+�>2 (Do �,�,�,�∈N∗)

Vậy : �+�+�+� là hợp số .