Muốn chứng tỏ 0,3 * (1983^1983 – 19171917) là số nguyên ta hãy chứng tỏ biểu thức 1983^1983 – 1917^1917 chia hết cho 10, hay nói cách khác biểu thức đó có kết quả là một số có chữ số tận cùng là 0.
Nhận thấy: 19834 có chữ số tận cùng bằng 1
19833 có chữ số tận cùng bằng 7
Nên 19831983 = (19834)495 * 19833 = 1983(4 * 495) + 3 có chữ số tận cùng là 7.
Nhận thấy 19174 có chữ số tận cùng bằng 1
Nên 19171917 = (19174)479 * 1917 có chữ số tận cùng là 7.
Do đó, hiệu số của biểu thức (19831983 – 19171917) sẽ có chữ số tận cùng là 0.
Vậy đáp số của phép tính 0,3 * (19831983 – 19171917) là số nguyên.
Lưu ý: Bài toán này có thể dùng nhị thức Newton để chứng minh đáp số của biểu thức
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Bảng xếp hạng
Tất cảToánVật lýHóa họcSinh họcNgữ vănTiếng anhLịch sửĐịa lýTin họcCông nghệGiáo dục công dânÂm nhạcMỹ thuậtTiếng anh thí điểmLịch sử và Địa lýThể dụcKhoa họcTự nhiên và xã hộiĐạo đứcThủ côngQuốc phòng an ninhTiếng việtKhoa học tự nhiên
\(0.3\left(1983^{1983}+1917^{1917}\right)\)
\(=0\)
Vậy kết quả của phép tính trên là 1 số nguyên
Muốn chứng tỏ 0,3 * (1983^1983 – 19171917) là số nguyên ta hãy chứng tỏ biểu thức 1983^1983 – 1917^1917 chia hết cho 10, hay nói cách khác biểu thức đó có kết quả là một số có chữ số tận cùng là 0.
Nhận thấy: 19834 có chữ số tận cùng bằng 1
19833 có chữ số tận cùng bằng 7
Nên 19831983 = (19834)495 * 19833 = 1983(4 * 495) + 3 có chữ số tận cùng là 7.
Nhận thấy 19174 có chữ số tận cùng bằng 1
Nên 19171917 = (19174)479 * 1917 có chữ số tận cùng là 7.
Do đó, hiệu số của biểu thức (19831983 – 19171917) sẽ có chữ số tận cùng là 0.
Vậy đáp số của phép tính 0,3 * (19831983 – 19171917) là số nguyên.
Lưu ý: Bài toán này có thể dùng nhị thức Newton để chứng minh đáp số của biểu thức