K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sử dụng phép  đồng dư nhá bạn.

\(7\equiv7\)(mod 100)

\(7^3\equiv43\)(mod 10)

\(7^4=1\)(mod 10)

\(\left(7^4\right)^{10}\equiv1^{10}=1\) (mod 10)

\(7^{40}.7^3\equiv1.43\equiv43\)  (mod10)

Vậy .....................................

16 tháng 6 2019

ta có: 7^34=7^4.10+3=7^4.10 .7^3=(7^4)^10 .7^3=2401^10 .343=...01.343=...43

=> dpcm

30 tháng 6 2017

Sử dụng phép đồng dư nhé :v

\(7\equiv7\) (mod 100)

\(7^3\equiv43\) (mod 10)

\(7^4\equiv1\) (mod 10)

\(\left(7^4\right)^{10}\equiv1^{10}\equiv1\) (mod 10)

\(7^{40}.7^3\equiv1.43\equiv43\) (mod 10)

Vậy chữ số tận cùng của 743 là 43.

Bài này hơi khó hiểu nhỉ :vv

1 tháng 9 2017

uiiiiiiiiiiii các bn làm mk mèo hỉu j hếtoho

28 tháng 7 2023

 Ta sẽ chứng minh rằng với mọi \(n\inℕ\) thì \(7^{4n+3}\) luôn có 2 chữ số tận cùng là 43.   (*)

 Thật vậy, với \(n=0\) thì \(7^3=343\) có 2 chữ số tận cùng là 43.

 Giả sử khẳng định đúng đến \(n=k\), khi đó \(7^{4k+3}=\overline{a_1a_2...a_t43}=\left(100A+43\right)\)

 Với \(n=k+1\), ta có \(7^{4\left(k+1\right)+3}=7^{4k+3+4}=7^{4k+3}.7^4\) 

\(=\left(100A+43\right).2401\) 

\(=\left(100A+43\right)\left(2400+1\right)\) 

\(=240000A+100A+103200+43\)

\(=100B+43\) có 2 chữ số tận cùng là 43.

 Vậy (*) được chứng minh. Nhận thấy \(43=4.10+1\) nên \(7^{43}\) có 2 chữ số tận cùng là 43 (đpcm)

28 tháng 7 2023

743 = 73\(.\)740 = 343 .(74)10 = 343.(2401)10 = 343\(\times\).\(\overline{...01}\) =\(\overline{...43}\)(đpcm)

24 tháng 7 2018

Ta thấy 74 = 2401, số có tận cùng là 01 nâng lên lũy thừa nào cũng có tận cùng là 01. Do đó:

743 = 740 . 73 = (74)10 . 343 = 240110 . 343 = (...01) . 343 = ...43

Vậy chữ số tận cùng của 743 là 43

5 tháng 3 2021

17 tháng 1 2016

là 43

các bạn cho mk vài li-ke cho tròn 770 với 

17 tháng 1 2016

sạo  

gọi chữ số tận cùng của 7n là:a

ta có:7n+4=7n.74=(...a).2401=...a

=>đpcm