Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\)(luôn đúng với mọi a)
Ta thấy : \(a^2\ge0\forall a\)
=> \(a^2+2\ge2\forall a\)
Mà \(\sqrt{a^2+1}>0\)
=> \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\) ( đpcm )
\(\begin{align} & \frac{{{a}^{2}}+2}{\sqrt{{{a}^{2}}+1}}\ge 2\forall a\in \mathbb{R} \\ & \Leftrightarrow {{a}^{2}}+2\ge 2\sqrt{{{a}^{2}}+1} \\ & \Leftrightarrow {{a}^{2}}-2\sqrt{{{a}^{2}}+1}+2\ge 0 \\ & \Leftrightarrow \left( {{a}^{2}}+1 \right)-2\sqrt{{{a}^{2}}+1}+1\ge 0 \\ & \Leftrightarrow {{\left( \sqrt{{{a}^{2}}+1}-1 \right)}^{2}}\ge 0 \text{(luôn đúng)} \\ \end{align} \)
a,Có \(\frac{a+8}{\sqrt{a-1}}\ge6\) (a>1) (1)
<=> \(a+8\ge6\sqrt{a-1}\)
<=> \(a^2+16a+64\ge36a-36\)
<=> \(a^2-20a+100\ge0\)
<=> \(\left(a-10\right)^2\ge0\)(luôn đúng với mọi a)
Dấu "="xảy ra <=> a=10
=> (1) đc CM
b, Áp dụng bđt cosi với hai số dương có
\(\sqrt{a^2+1}\le\frac{a^2+1+1}{2}=\frac{a^2+2}{2}\)
=> \(\frac{a^2+2}{\sqrt{a^2+1}}\ge\frac{a^2+2}{\frac{a^2+2}{2}}=\frac{2\left(a^2+2\right)}{a^2+2}=2\)
Dấu "=" xảy ra <=> a=0
\(\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2=\frac{1}{a}+\frac{1}{b}-\frac{a}{b}-\frac{b}{a}+2=\frac{a+b-1}{ab}+2\)
\(\frac{2\left(a+b-1\right)}{\left(a+b\right)^2-1}+2=\frac{2}{a+b+1}+2\ge\frac{2}{\sqrt{2\left(a^2+b^2\right)}+1}+2=\frac{2}{\sqrt{2}+1}+2=2\sqrt{2}\)
Dấu = xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Đặt \(a=\frac{x^2}{z},b=\frac{y^2}{z}\rightarrow x^4+y^4=z^2\) where x, y, z> 0
\(z\left(\frac{1}{x^2}+\frac{1}{y^2}\right)-\left(\frac{x}{y}-\frac{y}{x}\right)^2\ge2\sqrt{2}\)
\(\Leftrightarrow\sqrt{x^4+y^4}\left(\frac{1}{x^2}+\frac{1}{y^2}\right)\ge2\sqrt{2}+\left(\frac{x}{y}-\frac{y}{x}\right)^2\)
\(\Leftrightarrow\frac{2\left(3-2\sqrt{2}\right)\left(x^2-y^2\right)^2}{x^2y^2}\ge0\) *Đúng*
a) Với mọi số thực x ta có: \(\left(x-1\right)^2\ge0\Leftrightarrow x^2+1\ge2x\)
Tương tự \(y^2+1\ge2y,z^2+1\ge2z\)
Cộng theo vế các bất phương trình trên ta có0:
\(x^2+1+y^2+1+z^2+1\ge2x+2y+2z\)
\(\Leftrightarrow x^2+y^2+z^2+3\ge2\left(x+y+z\right)\)
Dấu "=" xảy ra khi và chỉ khi x=y=z=1
b) \(\frac{x^2+y^2}{x-y}=\frac{\left(x-y\right)^2+2xy}{x-y}=\left(x-y\right)+\frac{2}{x-y}\)
Vì x>y => x-y >0. Áp dụng bất đẳng thức cosi cho x-y>0 và 2/(x-y) >0. Ta có:
\(\left(x-y\right)+\frac{2}{x-y}\ge2\sqrt{\left(x-y\right).\frac{2}{x-y}}=2\sqrt{2}\)
@Xin giấu tên
\(x>1\) suy ra \(x>0\) là điều hiển nhiên
Hơn nữa \(x>1\Rightarrow x-1>1-1\leftrightarrow x-1>0\) (liên hệ giữa thứ tự và phép cộng) - Lớp 8
a) có \(\sqrt{x^2+2x+5}=\sqrt{x^2+2x+1+4}=\sqrt{\left(x+1\right)^2+4}\)Vì \(\left(x+1\right)^2\ge0\forall x\in R\rightarrow\left(x+1\right)^2+4\ge0+4=4\forall x\in R\)
\(\Rightarrow\sqrt{x^2+2x+5}\ge\sqrt{0+4}=\sqrt{4}=2\) (đpcm)
Dấu "=" xảy ra khi và chỉ khi \(x=-1.\)
b) \(x>\sqrt{x}\Leftrightarrow x^2>x\Leftrightarrow x^2-x>0\)
\(\Leftrightarrow x\left(x-1\right)\ge0\)
Vì \(x>1\rightarrow x>0;x-1>0\)
\(\Rightarrow x\left(x-1\right)>0\) với mọi \(x>1\)
hay \(x>\sqrt{x}\) (đpcm)
Chúc bạn học tốt!
Vì vai trò a,b,c như nhau nên ta giả sử
\(a\ge b\ge c>0\)
Ta có: \(2b\left(a+c\right)^2-\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+c\right)\left(a-b\right)\left(b-c\right)\ge0\)
\(\Rightarrow2b\left(a+c\right)^2\ge\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Khi đó:
\(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)\(\ge\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}\) (1)
Mà \(\frac{a^2+b^2+c^2}{ab+bc+ca}+\frac{4ac}{\left(a+c\right)^2}-2=\frac{\left(a^2+c^2-ab-bc\right)^2}{\left(a+c\right)^2\left(ab+bc+ca\right)}\ge0\) (2)
Từ (1) và (2) =>Đpcm
Ta dễ dàng chứng minh được \(a^2+b^2+c^2\ge ab+bc+ac\)
\(\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge1\Rightarrow\frac{a^2+b^2+c^2}{ab+bc+ac}\ge\frac{a^2+b^2+c^2+a^2}{ab+bc+ac+a^2}=\frac{2a^2+b^2+c^2}{\left(a+c\right)\left(a+b\right)}\)
Suy ra cần chứng minh \(\frac{2a^2+b^2+c^2}{\left(a+b\right)\left(a+c\right)}+\frac{8abc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge2\)
Điều này tương đương với \(\left(b+c\right)\left(2a^2+b^2+c^2\right)+8abc\ge2\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Leftrightarrow2a^2b+2a^2c+b^3+b^2c+c^2b+c^3+8abc\ge2\left(2abc+a^2b+ac^2+a^2c+b^2c+b^2a+bc^2\right)\)
\(\Leftrightarrow\left(b^2-2bc+c^2\right)\left(b+c-2a\right)\ge0\Leftrightarrow\left(b-c\right)^2\left(b+c-2a\right)\ge0\) (luôn đúng)
Vậy bđt ban đầu được chứng minh
\(a^2+a+1=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall a\)
\(P=\frac{a^2+a+1+1}{\sqrt{a^2+a+1}}=\sqrt{a^2+a+1}+\frac{1}{\sqrt{a^2+a+1}}\ge2\) (Cô-si)
Dấu "=" xảy ra khi \(a^2+a+1=1\Rightarrow\left[{}\begin{matrix}a=0\\a=-1\end{matrix}\right.\)