\(\frac{1}{4028}< \hept{ }\frac{1}{2}.....\frac{2013}{2014}< \frac{1}{2015...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

\(\frac{1}{4028}< \frac{1}{2}.....\frac{2013}{2014}< \frac{1}{2015}\)

Xét tích: \(\frac{1}{2}.....\frac{2013}{2014}\)    \(\Rightarrow\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2013}{2014}\)\(=\frac{1.2.3...2013}{2.3.4...2014}\)\(=\frac{1}{2014}\)

\(\Rightarrow\frac{1}{4028}< \frac{1}{2014}< \frac{1}{2015}\)( Vô lí )

26 tháng 3 2019

Đặt: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.....\frac{2013}{2014}\) (1)

Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\)

Do đó nhân vế với vế, ta được: 

\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\)

\(\Rightarrow A^2< \frac{1}{2015}\)

Mặt khác, \(A>\frac{1}{2}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\) (2)

Từ (1) và (2), ta được: 

\(A^2>\frac{1}{4}.\left(\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\right)\)

\(\Rightarrow A^2>\frac{1}{4}.\frac{3}{2015}\Rightarrow A^2>\frac{3}{8060}>\frac{1}{4028}\)

9 tháng 12 2019

Ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)

Tương tự : \(\frac{1}{3^2}< \frac{1}{2.3}\)\(\frac{1}{4^2}< \frac{1}{3.4}\); ......... ; \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)

\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2013.2014}\)               

        \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}\)

        \(=1-\frac{1}{2014}=\frac{2013}{2014}\)

\(\Rightarrow S< \frac{2013}{2014}\left(đpcm\right)\)

9 tháng 4 2019

em thử nhân S với 5 rồi lấy 5S= S thử đi

chị làm toàn như vậy

ko bt có đc ko nữa

3 tháng 7 2017

Ta có : \(\frac{a+2014}{a-2014}=\frac{a+2015}{a-2015}\)

\(\Rightarrow\left(a+2014\right)\left(a-2015\right)=\left(a-2014\right)\left(a+2015\right)\)

\(\Rightarrow a^2-a-2014.2015=a^2+a-2014.2015\)

\(\Leftrightarrow a^2-a=a^2+a\)

=> a2 - a2 - a = a

=> -a = a

=>  0 = a + a

=> 2a = 0

=> a = 0 

Vậy \(\frac{a}{2014}=\frac{b}{2015}\) (đpcm)