K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

Đặt A=\(\frac{1}{20.23}+\frac{1}{23.26}+....+\frac{1}{77.80}\)

=>A=\(\frac{1}{3}\).(\(\frac{3}{20.23}+\frac{3}{23.26}+....+\frac{3}{77.80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+.....+\frac{1}{77}-\frac{1}{80}\))

=>A=\(\frac{1}{3}\).(\(\frac{1}{20}-\frac{1}{80}\))

=>A=\(\frac{1}{3}.\frac{3}{80}\)

=>A=\(\frac{1}{80}\)

Do \(\frac{1}{80}\)<\(\frac{1}{9}\)

Nên \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+....+\frac{1}{77.80}< \frac{1}{9}\)

6 tháng 5 2019

ko bt

6 tháng 5 2019

\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\)

\(=\frac{1}{80}< \frac{1}{9}\)

6 tháng 5 2019

Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)

\(\frac{1}{3.}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+....+\frac{1}{77}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)

7 tháng 8 2019

\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\)

\(=\frac{1}{3}.\left(\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{27.80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}\)

\(=\frac{1}{80}< \frac{1}{9}\)

7 tháng 8 2019

oh oh oh oh

11 tháng 4 2017

Ta có B= 3(\(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\) )

         B= 3\(\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)

        B= 3.(\(\frac{1}{20}-\frac{1}{80}\))

        B=3.\(\frac{3}{80}\)=\(\frac{9}{80}\)

11 tháng 4 2017

\(\frac{3}{9}B=\frac{3}{9}.\left(\frac{9}{20.23}+\frac{9}{23.26}+\frac{9}{26.29}+...+\frac{9}{77.80}\right)\)

=> \(\frac{3}{9}B=\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+....+\frac{3}{77.80}\)

=\(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+....+\frac{1}{77}-\frac{1}{80}\)

=\(\frac{1}{20}-\frac{1}{80}=\frac{3}{80}\)

=> \(B=\frac{3}{80}:\frac{3}{9}=\frac{3}{80}.\frac{9}{3}=\frac{9}{80}\)

14 tháng 6 2020

\(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80} \)

\(=\frac{1}{3}.(\frac{1}{20}-\frac{1}{23})+\frac{1}{3}.(\frac{1}{23}-\frac{1}{26})+...+\frac{1}{3}.(\frac{1}{77}-\frac{1}{80})\)

=\(\frac{1}{3}.(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80})\)

=\(\frac{1}{3}.(\frac{1}{20}-\frac{1}{80})\)

=\(\frac{1}{3}.\frac{3}{80}\)

=\(\frac{1}{80}\)<\(\frac{1}{9}\)

Vậy tổng trên nhỏ hơn \(\frac{1}{9}\)

1 tháng 8 2021
G
12 tháng 5 2015

=\(3\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)\(=3\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=3\left(\frac{4}{80}-\frac{1}{80}\right)\)

\(=3.\frac{3}{80}\)

\(=\frac{9}{80}\)

12 tháng 5 2015

Katherine Lilly Filbert đúng rồi

22 tháng 6 2020

Đặt vế trái là B

\(3B=\frac{23-20}{20.23}+\frac{26-23}{23.26}+\frac{29-26}{26.29}+...+\frac{80-77}{77.80}\)

\(3B=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}=\frac{1}{20}-\frac{1}{80}\)

\(3B=\frac{3}{80}\Rightarrow B=\frac{1}{80}< \frac{1}{9}\)

22 tháng 6 2020

Ta có: \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}\)

\(=\frac{1}{3}\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)\)

\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)\)

\(=\frac{1}{3}\left(\frac{1}{20}-\frac{1}{80}\right)\)

\(=\frac{1}{3}.\frac{3}{80}=\frac{1}{80}< \frac{1}{9}\)

Vậy \(\frac{1}{20.23}+\frac{1}{23.26}+\frac{1}{26.29}+...+\frac{1}{77.80}< \frac{1}{9}\)

8 tháng 5 2017

Ta có
\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)
\(A=3^2\left(\frac{1}{20.23}+\frac{1}{23.26}+...+\frac{1}{77.80}\right)\)
\(A=3^2\cdot\frac{1}{3}\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\right)\)
\(A=3\left(\frac{1}{20}-\frac{1}{80}\right)\)
\(A=3\cdot\frac{3}{80}=\frac{9}{80}< 1\left(9< 80\right)\)

29 tháng 3 2018

\(A=\frac{3^2}{20.23}+\frac{3^2}{23.26}+...+\frac{3^2}{77.80}\)

\(\frac{A}{3}=\frac{3}{20.23}+\frac{3}{23.26}+...+\frac{3}{77.80}\)

\(\frac{A}{3}=\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+...+\frac{1}{77}-\frac{1}{80}\)

\(\frac{A}{3}=\frac{1}{20}-\frac{1}{80}\)

\(\frac{A}{3}=\frac{3}{80}\)

\(A=\frac{3}{80}.3=\frac{9}{80}< 1\)

29 tháng 3 2018

Đặt A=32/20.23+32/23.26+....................+32/77.80

      A=3(3/20.23+3/23.26+.........+3/77.80)

     A=3(1/20-1/23+1/23-1/26+.+1/77-1/80)

     A=3(1/20-1/80)

    A=3.3/80

    A=9/80                       Mà A=9/80<1         =>A<1                   (đpcm)

4 tháng 5 2016

\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+\frac{3^2}{26.29}+...+\frac{3^2}{77.80}\)

=\(\frac{3.3}{20.23}+\frac{3.3}{23.26}+\frac{3.3}{26.29}+...+\frac{3.3}{77.80}\)

=\(\frac{3}{20}-\frac{3}{23}+\frac{3}{23}-\frac{3}{26}+\frac{3}{26}-\frac{3}{29}+....+\frac{3}{77}-\frac{3}{80}\)

=\(\frac{3}{20}-\frac{3}{80}\)

=\(\frac{9}{80}\)

4 tháng 5 2016

Ta có:

\(\frac{3^2}{20.23}+\frac{3^2}{23.26}+\frac{3^2}{26.29}+...+\frac{3^2}{77.80}=3\left(\frac{3}{20.23}+\frac{3}{23.26}+\frac{3}{26.29}+...+\frac{3}{77.80}\right)=3\left(\frac{1}{20}-\frac{1}{23}+\frac{1}{23}-\frac{1}{26}+\frac{1}{26}-\frac{1}{29}+...+\frac{1}{77}-\frac{1}{80}\right)=3.\left(\frac{1}{20}-\frac{1}{80}\right)=3.\frac{3}{80}=\frac{9}{80}\)