Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử tứ giác đó là ABCE, các điểm M,N,P,Q ,E,F lần lượt là trung điểm của các đoạn : AB, BC,CD, DA ,BD và AC
Ta chứng minh được EMFP, QENF, MNPQ là hình bình hành ( cái này chỉ cần sử dụng đường trung bình là được )
từ đó suy ra MP, QN, EF đồng qui tại trung điểm G của EF ( vì 3 hình bình hành trên đồng tâm )
Giả sử tứ giác đó là ABCE, các điểm M,N,P,Q ,E,F lần lượt là trung điểm của các đoạn : AB, BC,CD, DA ,BD và AC
Ta chứng minh được EMFP, QENF, MNPQ là hình bình hành ( cái này chỉ cần sử dụng đường trung bình là được )
từ đó suy ra MP, QN, EF đồng qui tại trung điểm G của EF ( vì 3 hình bình hành trên đồng tâm )
Xét tam giác BCD có: - KB = KC (gt)
- MB = MD (gt)
MK là trung bình của BCD.
MK song song và bằng ½ CD
Tương tự như trên ta có:
- HN là trung bình ADC. HN song song và bằng ½ CD.
- HM là trung bình ABD. HM song song và bằng ½ AB.
- KN là trung bình của CAB. KN song song và bằng ½ AB.
H, M, N, K thẳng hàng (tiên đề Ơ – clit)
HK là trung bình của hình thang ABCD (tự chứng minh).
HK = (AB + CD)/2 (t/c)
HM + NK + KM + HN = 2HK.
mà MN = HK – HM – NK
MN = (HM + NK + KM + HN)/2 – HM – NK
= (AB + CD)/2 – AB
= 1/2AB – AB + CD/2
= CD/2 – 1/2AB
= (CD – AB)/2 (đpcm)