Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: f(x)=x2+2
Cho f(x)=0 ⇒ x2+2=0 ⇒x2= -2 (vô lý với mọi x )
Vậy f(x)= x2-x-x+2 vô nghiệm (đpcm)
Xin lỗi sai đề .Đề đúng nè
Ta có: f(x)=x2-2x+2
Cho : f(x)=x2-2x+2=0 => f(x)=(x2-2x+1)+1=0
=> f(x)=(x-1)2+1=0 (bất đẳng thức lớp 8 lận đó)
=> f(x)=(x-1)2= -1 (vô lý)
a) f(x) = x(x - 5) + 2(x - 5)
x(x - 5) + 2(x - 5) = 0
<=> (x - 5)(x - 2) = 0
x - 5 = 0 hoặc x - 2 = 0
x = 0 + 5 x = 0 + 2
x = 5 x = 2
=> x = 5 hoặc x = 2
a, f(x) có nghiệm
\(\Leftrightarrow x\left(x-5\right)+2\left(x-5\right)=0\)
\(\Rightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-2\end{cases}}\)
->tự kết luận.
b1, để g(x) có nghiệm thì:
\(g\left(x\right)=2x\left(x-2\right)-x^2+5+4x=0\)
\(\Rightarrow2x^2-4x-x^2+5+4x=0\)
\(\Rightarrow x^2+5=0\)
Do \(x^2\ge0\forall x\)nên\(x^2+5\ge5\forall x\)
suy ra: k tồn tại \(x^2+5=0\)
Vậy:.....
b2,
\(f\left(x\right)=x\left(x-5\right)+2\left(x-5\right)\)
\(=x^2-5x+2x-10\)
\(=x^2-3x-10\)
\(f\left(x\right)-g\left(x\right)=x^2+5-\left(x^2-3x-10\right)\)
\(=x^2+5-x^2+3x-10=3x-5\)
Có
\(\left|x-2\right|+\left|x-4\right|=\left|x-2\right|+\left|4-x\right|\ge\left|x-2+4-x\right|=2\)
\(\left|x-3\right|\ge0\)
=> \(\left|x-2\right|+\left|x-4\right|+\left|x-3\right|\ge2\)
Dấu "=" xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\x-2>0\\4-x>0\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x=3\\x-2< 0\\4-x< 0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=3\\x>2\\x< 4\end{matrix}\right.\\\left\{{}\begin{matrix}x=3\\x< 2\\x>4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=3\)
Chứng minh đa thức P(x) = 2(x-3)^2 + 5 không có nghiệm nha mấy chế
Tui viết sai đề :v
a) Ta có no của đa thức f(x) = 0
\(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)
\(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)
\(\Leftrightarrow x=\frac{1}{6}\)
Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)
b) Ta có no của đa thức g(x) = 0
\(\Leftrightarrow2x^2-x=0\)
\(\Leftrightarrow x.\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)
Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)
bài 1:
a) C= 0
hay 3x+5+(7-x)=0
3x+(7-x)=-5
với 3x=-5
x= -5:3= \(x = { {-5} \over 3}\)
với 7-x=-5
x= 7+5= 12
=> nghiệm của đa thức C là: x=\(x = { {-5} \over 3}\) và x= 12
mình làm một cái thui nhá, còn đa thức D cậu lm tương tự nha
Ta có: - x2 - 1 = 0
-x2 = 1
-1 = x2
x2 = -1
vì không có số nào bình phương bằng số âm nên đa thức -x2-1 không có nghiệm
K CHO MIK NHA
Ta có :
\(f\left(x\right)=x^2-x-x+2\\ \Leftrightarrow x^2-x-x+1+1\\ \Leftrightarrow x\left(x-1\right)-\left(x-1\right)+1\\ \Leftrightarrow\left(x-1\right)^2+1\)
mà : \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2+1\ge1\forall x\)
\(\Rightarrow\) Đa thức vô nghiệm.