K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2021

Có x^2020 lớn hơn hoặc bằng 0 với mọi x

x^2020+x^2021+2019 lớn hơn hoặc bằng 2019 với mọi x

=> x^2020+x^2021+2019>0 với mọi x

=>G(x) vô nghiệm

DD
3 tháng 8 2021

Bạn kiểm tra đề có vấn đề gì không nhé. 

Vì ta có đa thức \(P\left(x\right)\)có hệ số nguyên thì \(\left[P\left(a\right)-P\left(b\right)\right]⋮\left(a-b\right)\).

Ta có: \(2021=1.2021=43.47\)

\(20-11=9\Rightarrow P\left(20\right)-P\left(11\right)⋮9\)

Do là đa thức có hệ số nguyên nên \(P\left(20\right),P\left(11\right)\)đều là số nguyên. 

Ta thử các trường hợp của \(P\left(20\right)\)và \(P\left(11\right)\) đều không có trường hợp nào thỏa mãn \(P\left(20\right)-P\left(11\right)⋮9\).

3 tháng 8 2021

đây là câu hỏi nâng cao chứ chắc ko sai đây ạ

mình đang cần làm cái cmr ý ạ

18 tháng 4 2021

a/ \(M\left(x\right)=-x^2+5\)

Có \(-x^2\le0\forall x\)

=> \(M\left(x\right)\le5\forall x\)

=> M(x) không có nghiệm.

2/

Thay \(x=\dfrac{1}{2}\) vào đa thức M(x) có

\(M\left(\dfrac{1}{2}\right)=\dfrac{1}{4}a+\dfrac{5}{2}-3=0\)

\(\Leftrightarrow\dfrac{1}{4}a=\dfrac{1}{2}\)

\(\Leftrightarrow a=2\)

Vậy...

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

Lời giải:
Giả sử $P(x)$ có nghiệm $a$ nguyên. Khi đó:

$a^3-3a+5=0$

$\Leftrightarrow a(a^2-3)=-5$

Khi đó ta xét các TH sau:

TH1: $a=1; a^2-3=-5$

$\Leftrightarrow a=1$ và $a^2=2$ (vô lý)

TH2: $a=-1; a^2-3=5$

$\Leftrightarrow a=-1; a^2=8$ (vô lý)

TH3: $a=5; a^2-3=-1$

$\Leftrightarrow a=5$ và $a^2=2$ (vô lý)

TH4: $a=-5; a^2-3=1$

$\Leftrightarrow a=-5$ và $a^2=4$ (vô lý)

Vậy điều giả sử là sai, tức $P(x)$ không có nghiệm nguyên.

\(P\left(x\right)=x^3-x+5=0\)

\(x^3-x=-5\)

\(x.\left(x^2-1\right)=-5\)

Lập bảng ( vì đề nhủ c/m nghiệm nguyên)

Loại cả 4 cái

vậy...

21 tháng 3 2020

Ta có : P( x ) = x3 - x + 5 

                     = x ( x2 - 1 ) + 5

                     = x ( x - 1 ) ( x + 1 ) + 5 

Gọi P( x ) có nghiệm nguyên là : x = a 

\( \implies\)P( a ) = a ( a - 1 ) ( a + 1 ) + 5 = 0

\( \implies\)  a ( a - 1 ) ( a + 1 ) = - 5

Vì a là số nguyên \( \implies\)  a ; ( a - 1 ) ; ( a + 1 ) là ba số nguyên liên tiếp . Do đó chúng chia hết cho 2 

Mà - 5 không chia hết cho 2

\( \implies\)  a ( a - 1 ) ( a + 1 ) không thể bằng - 5 

\( \implies\) Không có giá trị a nguyên nào thỏa mãn P( a ) = 0

Vậy đa thức P( x ) =  x3 - x + 5 không có nghiệm nguyên ( đpcm )

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Lời giải:
$M(x)=x^2-x+2023=(x^2-x+\frac{1}{4})+\frac{8091}{4}=(x-\frac{1}{2})^2+\frac{8091}{4}$

Vì $(x-\frac{1}{2})^2\geq 0$ với mọi $x$ nên $M(x)\geq \frac{8091}{4}>0$ với mọi $x$
$\RIghtarrow M(x)\neq 0$ với mọi $x$ nên $M(x)$ không có nghiệm.

Giả sử đa thức P(x) có nghiệm nguyên 

=>P(x) có nghiệm chia hết cho 1 hoặc -1

=>1 và -1 là nghiệm

+) Nếu x=1

⇒P(1)=1^4−3.1^3−4.1^2−2.1−1⇒P(1)=1^4-3.1^3-4.1^2-2.1-1

⇒P(1)=1−3.1−4.1−2.1−1⇒P(1)=1-3.1-4.1-2.1-1

⇒P(1)=1−3−4−2−1⇒P(1)=1-3-4-2-1

⇒P(1)=−9≠0⇒P(1)=-9≠0

⇒x=1 không phải là nghiệm của P(x)P(x)

+) Nếu x=−1

⇒P(−1)=(−1)^4−3.(−1)^3−4.(−1)^2−2.(−1)−1⇒P(-1)=(-1)^4-3.(-1)^3-4.(-1)^2-2.(-1)-1

⇒P(−1)=1−3.(−1)−4.1−(−2)−1⇒P(-1)=1-3.(-1)-4.1-(-2)-1

⇒P(−1)=1+3−4+2−1⇒P(-1)=1+3-4+2-1

⇒P(−1)=1≠0⇒P(-1)=1≠0

⇒x=−1 không phải là nghiệm của P(x)P(x)

Vậy P(x) không có nghiệm là số nguyên