Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(7^6+7^5-7^4=7^4\left(7^2+7-1\right)=7^4\left(49+7-1\right)=7^4.55⋮55\)
b) \(16^5+2^{15}=\left(2^4\right)^5+2^{15}=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\left(32+1\right)=2^{15}.33⋮33\)
c) \(81^7-27^9-9^{13}=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}.5=3^{22}.3^4.5=3^{22}.405⋮405\)
a: \(=7^4\left(7^2+7-1\right)=7^4\cdot55⋮55\)
b: \(=2^{20}+2^{15}=2^{15}\left(2^5+1\right)=2^{15}\cdot33⋮33\)
c: \(=3^{28}-3^{27}-3^{26}=3^{26}\left(3^2-3-1\right)=3^{26}\cdot5=3^{22}\cdot405⋮405\)
1; 87 - 218 ⋮ 14
A = 87 - 218
A = - 131 (là số lẻ); 14 là số chẵn
Số lẻ không bao giờ chi hết cho số chẵn
2; 76 + 75 - 913 ⋮ 55
B = 76 + 75 - 913
B = 151 - 913
B = - 762 không chia hết cho 5 nên không chia hết cho 55
a. ta có : (n+15) -(n+10) =5 do đó n+15 và n+10 không cùng tính chẵn lẻ
do đó 1 trong hai số chia hết cho 2
nên tích hai số đó chia hết cho 2.
b, do n ,n+1, n+2 là 3 số tự nhiên liên tiếp nên tồn tại 1 trong 3 số chia hết cho 3
nên tích ba số đã cho chia hết cho 3
mình biết câu a
a=[n+10].[n+15]chia hết cho 2
khi n là số chẵn thì n +10 sẽ chia hết cho 2
khi n là số lẻ thì 15+n sẽ chia hết cho 2
nên a chia hết cho 2
a)nếu n=2k(kEN)
thì (n+10)(n+15)=(2k+10)(2k+15)=2k(2k+15)+10(2k+15)=4k^2+30k+20k+150=4k^2+50k+150 chia hết cho 2
nếu n=2k+1(kEN)
thì (n+10)(n+15)=(2k+1+10)(2k+1+15)=(2k+11)(2k+16)=2k(2k+16)+11(2k+16)=4k^2+32k+22k+176=4k^2+54k+176 chia hết cho 2
Vậy với mọi nEN thì A=(n+10)(n+15) chia hết cho 2
b)(4n-5) chia hết cho 2n-1
4n-2-3 chia hết cho 2n-1
2(2n-1)-3 chia hết cho 2n-1
=>3 chia hết cho 2n-1 hay 2n-1 E Ư(3)={1;3}
=>2nE{2;4}
=>n E{1;2}
Vậy để 4n-5 chia hết cho 2n-1 thì nE{1;2}
\(A=\left(n+10\right)\left(n+15\right)\)
\(A=n^2+15n+10n+150\)
\(A=n^2+25n+150\)
Xét: 150 là 1 số chẵn.
Xét: Nếu n chẵn:
\(n^2;25n\) luôn chẵn
\(\Rightarrow n^2+25n+150\)= chẵn+chẵn+chẵn=chẵn \(⋮2\)
Xét: Nếu n lẻ:
\(\Rightarrow n^2;25n\) luôn lẻ
\(\Rightarrow n^2+25+150\)= lẻ+lẻ+chẵn=chẵn \(⋮2\)
\(\rightarrow A⋮2\rightarrowđpcm\)
\(B=81^7-27^9-9^{13}\)
\(B=\left(3^4\right)^7-\left(3^3\right)^9-\left(3^2\right)^{13}\)
\(B=3^{28}-3^{27}-3^{26}\)
\(B=3^2.3^{26}-3.3^{26}-3^{26}\)
\(B=3^{26}\left(3^2-3-1\right)\)
\(B=3^{26}.5⋮5\)
\(B=\left(3^2\right)^{13}.5\)
\(B=9^{13}.5⋮9\)
\(B⋮5;9\Rightarrow B⋮45\rightarrowđpcm\)