Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
abc = a100 + b10 + c
bca = b100 + c10 + a
cab = c100 + a10 + b
=> abc + bca + cab = (a100 + b100 + c100) + (b10 + c10 + a10) + (c + a + b) = (a + b + c)*100 + (a + b + c)*10 + (a + b + c)*1
= (a + b + c) * ( 100 + 10 + 1) = (a + b + c)*111 chia hết cho 111
=> abc + cab + bca chia hết cho 111
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= (100+10+1)a + (100+10+1)b + (100+10+1)c
= 111a + 111b + 111c = 111(a+b+c)
Vậy abc + bca + cab chia hết cho 111
abc + bca + cab
= 100a + 10b + c + 100b + 10c + a + 100c + 10a + b
= 111a + 111b + 111c
= 111(a + b + c)
= 3.37(a + b + c) ⋮ 3
Vậy (abc + bca + cab) ⋮ 3
đặt A = abc = ( 102 . a + 10 . b + c ) \(⋮\)37
\(\Rightarrow\)10A = ( 103 . a + 102 . b + 10c ) \(⋮\)37
10A = 102 . b + 10 . c + a + 999a = bca + 999a
vì 999a = 37 . 27a \(⋮\)37 ; 10A \(⋮\)37
suy ra : bca \(⋮\)37
tương tự ta có : 10bca \(⋮\)37, 999b \(⋮\)37
suy ra : cab \(⋮\)37
Vì chia hết cho 37 chỉ cần tổng các chữ số chẳng hạn như 3 ; 9.
=>abc chia hết cho 37 thì cả bca và cab chia hết cho 7.
abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b=111a+111b+111c=37.3a+37.3b=37.3c=37(3a+3b+3c)
Vậy abc+bac+cab chia hết cho 37
\(\overline{abc}+\overline{bca}+\overline{cab}⋮37\)
\(\Rightarrow1000.a+100.b+10.c⋮37\)
\(\Rightarrow1000a-999.a+100.b+10.c⋮37\)
\(\Rightarrow100.b+10.c+a=\overline{bca}⋮37\)
(abc) chia hết cho 37=> 100.a + 10.b + c chia hết cho 37
=> 1000.a + 100.b + 10.c chia hết cho 37
=> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
=> 100.b + 10.c + a = (bca) chia hết cho 37
(abc) chia hết cho 37 ---> 100.a + 10.b + c chia hết cho 37
---> 1000.a + 100.b + 10.c chia hết cho 37
---> 1000.a - 999.a + 100.b + 10.c chia hết cho 37 (vì 999.a chia hết cho 37)
---> 100.b + 10.c + a = (bca) chia hết cho 37
(bca) chia hết cho 37 ---> 100.b+10.c+a chia hết cho 37
---> 1000.b + 100.c + 10.a chia hết cho 37
---> 1000.b - 999.b + 100.c + 10.a chia hết cho 37 (vì 999.b chia hết cho 37)
---> 100.c + 10.a + b = (cab) chia hết cho 37
Số (abc) chia hết cho 37 => 100a + 10b + c chia hết cho 37 =>(Nhân 10 vô) 1000a + 100b + 10c chia hết cho 37 (1). Trừ cho 999a thì (1) vẫn chia hết cho 37 do 999 chia hết cho 37 từ đó suy ra đpcm!
có : abc + cba +cab : hết 111
100 a +10b+1c+100b+10c+1a+100c+10b+1a
=(100 a +10b+1c) + (100b+10c+1a) + ( 100c+10b+1a )
= 111 abc + 111bca+111cab : hết 111
= 111 . ( abc + bca + cab ) : hết 111
vậy , abc + bca + cab : hết cho 111
mất rất nhìu thời gian TT TT
abc+bca+cab=100a+10b+c+100b+10c+a+100c+10a+b
=111a+111b+111c=111(a+b+c)chia hết cho 111 (đpcm)