Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như thiếu điều kiện \(a,b,c>0\)
Áp dụng BĐT Cosi:
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{2}{\sqrt{ab}}\)
\(\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{2}{\sqrt{bc}}\)
\(\dfrac{1}{c}+\dfrac{1}{a}\ge\dfrac{2}{\sqrt{ca}}\)
Cộng vế theo vế các BĐT trên ta được:
\(2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge2\left(\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\right)\)
\(\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{1}{\sqrt{ab}}+\dfrac{1}{\sqrt{bc}}+\dfrac{1}{\sqrt{ca}}\)
Đẳng thức xảy ra khi \(a=b=c\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
Bất đẳng thức cần chứng minh tương đương với\(\Sigma_{cyc}\left(\sqrt{5a^2+4bc}-2\sqrt{bc}\right)\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Hay \(\Sigma_{cyc}\frac{5a^2}{\sqrt{5a^2+4bc}+2\sqrt{bc}}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)\(\Leftrightarrow\frac{1}{\sqrt{3\left(a^2+b^2+c^2\right)}}\left(\Sigma_{cyc}\frac{5a^2}{\sqrt{5a^2+4bc}+2\sqrt{bc}}\right)\ge1\)
Áp dụng bất đẳng thức Cauchy ta có \(2\sqrt{5a^2+4bc}\sqrt{3\left(a^2+b^2+c^2\right)}\le8a^2+3b^2+3c^2+4bc\)\(4\sqrt{bc}\sqrt{3\left(a^2+b^2+c^2\right)}=\frac{4.3\sqrt{bc}.\sqrt{3\left(a^2+b^2+c^2\right)}}{3}\)\(\le\frac{2\left(3a^2+3b^2+3c^2+9bc\right)}{3}=2\left(a^2+b^2+c^2+3bc\right)\)
Cộng theo vế hai bất đẳng thức trên ta được \(2\left(\sqrt{5a^2+4bc}+2\sqrt{bc}\right)\sqrt{3\left(a^2+b^2+c^2\right)}\)\(\le10a^2+5b^2+5c^2+10bc\)
Suy ra \(\frac{10a^2}{2\left(\sqrt{5a^2+4bc}+2\sqrt{bc}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\)\(\ge\frac{10a^2}{10a^2+5b^2+5c^2+10bc}\)
Lại có \(10bc\le5b^2+5c^2\)nên \(\frac{10a^2}{10a^2+5b^2+5c^2+10bc}\ge\frac{10a^2}{10a^2+10b^2+10c^2}=\frac{a^2}{a^2+b^2+c^2}\)
Do đó ta được \(\frac{5a^2}{\left(\sqrt{5a^2+4bc}+2\sqrt{bc}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{a^2}{a^2+b^2+c^2}\)(1)
Hoàn toàn tương tự, ta được: \(\frac{5b^2}{\left(\sqrt{5b^2+4ca}+2\sqrt{ca}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{b^2}{a^2+b^2+c^2}\)(2) ; \(\frac{5c^2}{\left(\sqrt{5c^2+4ab}+2\sqrt{ab}\right)\sqrt{3\left(a^2+b^2+c^2\right)}}\ge\frac{c^2}{a^2+b^2+c^2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1}{\sqrt{3\left(a^2+b^2+c^2\right)}}\left(\Sigma_{cyc}\frac{5a^2}{\sqrt{5a^2+4bc}+2\sqrt{bc}}\right)\ge\frac{a^2+b^2+c^2}{a^2+b^2+c^2}=1\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c
Bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\) \(\left(\forall a,b,c>0\right)\)
chứng minh bổ đề: \(\Sigma_{cyc}\left(\dfrac{a^3}{a^3+b^3+c^3}\right)+\dfrac{1}{3}+\dfrac{1}{3}\ge3\sqrt[3]{\left(\Pi_{cyc}\dfrac{a^3}{a^3+b^3+c^3}\right).\dfrac{1}{3}.\dfrac{1}{3}}\)
hoán vị theo a,b,c
ta được: \(3\ge\dfrac{3\left(a+b+c\right)}{\sqrt[3]{9.\left(a^3+b^3+c^3\right)}}\)
mũ 3 hai vế ta có được bất đẳng thức bổ đề: \(a^3+b^3+c^3\ge\dfrac{1}{9}\left(a+b+c\right)^3\)
Áp dụng bất C-S:
\(\sqrt{a^3+3b}+\sqrt{b^3+3c}+\sqrt{c^3+3a}\ge\sqrt{\left(1+1+1\right)\left(a^3+b^3+c^3+3a+3b+3c\right)}\)
\(\ge\sqrt{3.\left[3+3\left(a+b+c\right)\right]}=\sqrt{36}=6\)
Dấu "=" xảy ra tại a=b=c=1
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}=\sqrt{a}\sqrt{3a+b}+\sqrt{b}\sqrt{3b+a}\)
\(\le\sqrt{\left(a+b\right)\left(3a+b+3b+a\right)}=2\left(a+b\right)\)
\(\Rightarrow\dfrac{a+b}{\sqrt{a\left(3a+b\right)}+\sqrt{b\left(3b+a\right)}}\ge\dfrac{a+b}{2\left(a+b\right)}=\dfrac{1}{2}\)
Đẳng thức xảy ra khi \(a=b\)
giải thích chỗ đang <= rồi chuyển sang >= là sao