K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2016

Theo đề, ta có: a,b,c > 0 

a+b+c =1 => a,b,c < 1 

=>  0 < a,b,c < 1 

(sao lại \< 1 được ak???)

11 tháng 4 2016

a. Ta có :a>hoặc =b ,a>hoặc =c>0

suy ra :b - c<a< b+c

Ta có : a< b+c

suy ra :a+a<b+c+a

suy ra:2a<a+b+c

suy ra :a< a+b+c\2

b. ta có : a> hoặc =b>0 ,a> hoặc =c>0

suy ra :b+c < hoặc = a+a

suy ra : b+c < hoặc = 2a 

suy ra :a+b+c< hoặc = 3a

suy ra : a+b+c \3 < hoặc = a


A B C a b c

19 tháng 4 2020

a+a<b+c

2a<a+b+c

26 tháng 3 2020

Ta có:

a<b+ca<b+c 
--> a+a<a+b+ca+a<a+b+c 
--> 2a<22a<2 
--> a<1a<1 

Tương tự ta có : b<1,c<1b<1,c<1 

Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0 
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0 
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0 
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc 

Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca 
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca 
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2 
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm

23 tháng 12 2015

Đề : ab + 4bc + ca \(\le\)

Có : a + b + c = 0 => a = - b - c

Thay vào ab + 4bc + ca \(\le\)0 ta đc:

(-b - c).b + 4bc + c.(-b - c) \(\le\) 0

=> -b2 - bc + 4bc - bc - c2 \(\le\)0

=> -b2 - c2 + 2bc \(\le\)0

=> - (b2 - 2bc + c2\(\le\) 0

=> -(b - c)2 \(\le\) 0 (luôn đúng)

Vậy ab + 4bc + ca  \(\le\) 0

1 tháng 3 2017

abc bằng 0

26 tháng 1 2019

tội nghiệp 4 năm rồi mà dell cs ai trả lời